Characterising the chaotic nature of ocean ventilation

Graeme MacGilchrist, Helen Johnson, David Marshall, Camille Lique, Matthew Thomas

Eddy stirring and filamentation

Manucharyan and Thompson (2017)

Lagrangian tracing of filaments

Plumb et al. (1994)

OME, Tallahassee, FL 12th March, 2019

In nonlinear dynamical systems, *filament width* characterises the chaotic nature of trajectories by establishing *sensitivity to initial conditions*

Forced double-well oscillator

Lagrangian map from initial to final state

Graeme A. MacGilchrist graemem@princeton.edu

The thinning of filaments in dynamical systems is analogous to stretching and folding of puff pastry, at a rate defined by the *strain*

graemem@princeton.edu

 $\frac{d\Delta x}{dt} =$ $\gamma \Delta x$

$$\Delta x(t) = \Delta x(0) e^{-\int_0^t \gamma dt}$$
$$= \Delta x(0) e^{-\overline{\gamma}^t t}$$

 $\overline{\gamma}^t$ is the (average) vigour with which the baker rolls the pastry

t is the time they've been working for

In the ocean, the role of the baker is played by the circulation, with the strain rate set by local velocity gradients

 $4\gamma^2 = \left(\frac{\partial u}{\partial x} - \frac{\partial v}{\partial y}\right)^2 + \left(\frac{\partial v}{\partial x} + \frac{\partial u}{\partial y}\right)^2$

$$\Delta x(t) = \Delta x(0) e^{-\overline{\gamma}^L t}$$

 $\overline{\gamma}^L$ is the average strain rate following a Lagrangian trajectory

OME, Tallahassee, FL 12th March, 2019

For a *ventilated* fluid parcel, the 'time that the baker has been working for' is the time since ventilation, allowing the definition of a *filamentation number*, **F**

Ventilation pathways

$$\overline{\gamma}^L t = \frac{\tau_{\text{vent}}}{\overline{\tau}_{\text{strain}}^L} = F$$

$$\Delta x(t) = \Delta x(0)e^{-F}$$

In a region with F = 4, we would expect typically a 50-fold reduction in filament width since ventilation

OME, Tallahassee, Fl

12th March, 2019

We calculated F in the subtropical thermocline of a 1/4° ocean model, using backwards-in-time Lagrangian trajectories

OME, Tallahassee, Fl

12th March, 2019

We calculated F in the subtropical thermocline of a 1/4° ocean model, using backwards-in-time Lagrangian trajectories

Graeme A. MacGilchrist graemem@princeton.edu

We calculated F in the subtropical thermocline of a 1/4° ocean model, using backwards-in-time Lagrangian trajectories

Graeme A. MacGilchrist graemem@princeton.edu

We resolve filaments directly, equivalent to a dynamical systems Lagrangian map, using year and longitude of ventilation as the 'final state'

Graeme A. MacGilchrist graemem@princeton.edu OME, Tallahassee, FL 12th March, 2019

Year of ventilation

We resolve filaments directly, equivalent to a dynamical systems Lagrangian map, using year and longitude of ventilation as the 'final state'

Graeme A. MacGilchrist graemem@princeton.edu

The filament width of the Lagrangian maps exhibits the expected behaviour: smaller filaments for larger F

Power spectra of ventilation longitude

PDFs of ventilation longitude gradients

OME, Tallahassee, FL 12th March, 2019

Summary

- By analogy to dynamical systems, the chaotic nature of ocean ventilation can be characterised by a reduction in filament width since subduction.
- This is quantified by the non-dimensional number *F*, a ratio of *ventilation* and *strain* timescales.
- *F* is large across three density surfaces in the subtropical North Atlantic thermocline.
- Resolving filament width directly (through backwards-in-time Lagrangian maps) shows the expected relationship with *F*.

MacGilchrist *et al.* (2017) Characterizing the chaotic nature of ocean ventilation, *JGR Oceans*, 122.

42°

40°

38°

OME, Tallahassee, FL 12th March, 2019

36°

34°