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Mesoscale Turbulence

* The dynamics of the ocean are heterogeneous and spatially
Intermittent, even at small scales

Pearson & Fox-Kemper
Physical Review Letters (2018)
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Inertial Cascades

* Mesoscale eddy forced at deformation radius

* Eddy breaks into child eddies conserving properties

Adapted from Meneveau
& Sreenivasan,
JFM (1991)
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Inertial Cascades

* Mesoscale eddy forced at deformation radius

* Eddy breaks into child eddies conserving properties
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Inertial Cascades

* Mesoscale eddy forced at deformation radius

* Eddy breaks into child eddies conserving properties

\ Child e This cascade to smaller
@ eddies scales repeats
e Child eddies take fraction
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\ 2

* After n cascade steps then
sln =&l0 (edn /0 ) =)'i=1Tn#log(
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Adapted from Meneveau e
& Sreenivasan,
JFM (1991)
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Spatial Distribution of Turbulence Statistics

» KE dissipation in Parallel Ocean Program (POP) 1 /1070 model

Latitude

Longitude

Pearson & Fox-Kemper,
Physical Review Letters (2018)
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Spatial Distribution of Turbulence Statistics

Symbols = Model data

Latitude

Pearson & Fox-Kemper,
Physical Review Letters (2018)
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Spatial Distribution of Turbulence Statistics

0.8
e Modelled mesoscale turbulence has
.. Symbols = Model
log-normal statistics 0.8 data
L Lines — Lognormal #
004 Fit

* How can we observe and diagnose
the spatial variations in mesoscale
spectral fluxes?

Pearson & Fox-Kemper,
Physical Review Letters (2018)
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Structure Functions

* Structure functions depend on spatial differences in variables

S¢=p(x+1)-P(%)

* Exact laws relate structure functions to spectral fluxes in inertial
cascades of 1sotropic, homogeneous turbulence

Spectral KF Flux=s=—-5/4 -0ull oull dull /r
3D turbulence:

Kolmogorov (1941)
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Structure Functions
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Structure Functions
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Structure Functions

Structure functions depend on spatial differences in variables

S¢=p(x+1)-P(%)

Exact laws relate structure functions to spectral fluxes in inertial
cascades offisotropic Jhomogeneous turbulence

Spectral KF Flux=s=—-5/4 -0ull oull dull /r
3D turbulence:

Kolmogorov (1941)

Spectral Fnstrophy Flux=&lg=—1/2 -0ull dgdq /r
QG turbulence:

Lindborg (2007)
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Anisotropic Structure Functions

. slg=—1/2-0ull 6gdqg /r
Isotropic QG:

glg=—1/4 V-(dudgog )

Anisotropic QG:

Augier et al
(2012)

« Requires complete prior knowledge of anisotropy to quantify &g
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New Anisotropic Structure Functions

elg=—1/2 6goAlqg where Alg=—ulg-Vg

New statistic has the following benefits over £lg=—1/4 V-(
oudqgdq ):

1. Does not require integration
2. Can be evaluated without prior quantification of anisotropy

3. Has two, rather than three, differences (potential convergence
benefits)
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New Anisotropic Structure Functions

elg=—1/2 6goAlqg where Alg=—ulg-Vg

New statistic has the following benefits over £lg=—1/4 V-(
oudqgdq ):

1. Does not require integration
2. Can be evaluated without prior quantification of anisotropy

3. Has two, rather than three, differences (potential convergence
benefits)

However, it does require knowledge of local flow gradients (amenable
to numerical models, and future data [1.e. SWOT])
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Extension to other dynamical regimes

slg=—1/2 0goAlqg inthe QG enstrophy cascade

Analogous relations for diagnosing spectral fluxes in the;

1. QG inverse energy cascade
Pearson, Pearson &

Fox-Kemper In prep. (GRL)
2. Surface QG cascades

Pearson, Pearson &

. . Fox-Kemper In prep.
3. Two-dimensional cascades
(Phys. Rev. Fluids)
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Extension to other dynamical regimes

slg=—1/2 0goAlqg inthe QG enstrophy cascade

Analogous relations for diagnosing spectral fluxes in the;

1. QG inverse energy cascade
Pearson, Pearson &

Fox-Kemper In prep. (GRL)
2. Surface QG cascades

Pearson, Pearson &

. . Fox-Kemper In prep.
3. Two-dimensional cascades
(Phys. Rev. Fluids)

In 1sotropic limit, new and old structure functions converge
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New comparable to old under

anisotropic conditions

Structure functions (72273 s7—3)
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| Surface QG dynamics

Simulated by pyQG
Abernathey et al
(2015)
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Summary & Conclusions

* Mesoscale turbulence has log-normal statistics in numerical
models
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Summary & Conclusions

Mesoscale turbulence has log-normal statistics in numerical
models

Log-normality allows us to accurately quantify observational data
and develop more precise turbulence parameterizations

New structure functions could diagnose spectral fluxes from
patchy or irregular data

New structure functions for anisotropic QG, SQG, and 2D inertial
cascades
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Anisotropic Structure Functions

elg=—1/4 V-(dudgdq )
Anisotropic QG:

Augier et al
(2012)

« Requires complete prior knowledge of anisotropy to quantify &g
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