

Icehouses are rare

- Icehouse periods make up <25% of the past billion years
- Late Paleozoic Ice Age (LPIA) is the last analogue of a deglaciating world

- 1. Supercontinental geography
 - Most land in the southern hemisphere
 - Large equatorial mountain range

- 1. Supercontinental geography
 - Most land in the southern hemisphere
 - Large equatorial mountain range

- 1. Supercontinental geography
 - Most land in the southern hemisphere
 - Large equatorial mountain range
- 2. Radiative forcing
 - Varying fluxes of greenhouse gases
 - Reduced solar luminosity 2.5%

- 1. Supercontinental geography
 - Most land in the southern hemisphere
 - Large equatorial mountain range
- 2. Radiative forcing
 - Varying fluxes of greenhouse gases
 - Reduced solar luminosity 2.5%
- 3. Extreme sea level change
 - Vast shallow inland seas

- 1. Supercontinental geography
 - Most land in the southern hemisphere
 - Large equatorial mountain range
- 2. Radiative forcing
 - Varying fluxes of greenhouse gases
 - Reduced solar luminosity 2.5%
- 3. Extreme sea level change
 - Vast shallow inland seas
- 4. Glacial geography
 - Virtually all land ice in southern hemisphere

Modern Vegetation

Tropical vegetation during the Quaternary

- The response of tropical vegetation to glacialinterglacial cycles, even within a single region, is nonuniform and complex
 - E.g. South America

Tropical vegetation during the Late Paleozoic

 Shifts in tropical biomes occurred over glacial-interglacial cycles, but whether the tropics were relatively wet or dry during glacial intervals is debated

Glacial and interglacial simulations

Four fully-coupled water isotope-enabled CESM simulations:

- 1. LPig = Late Paleozoic interglacial
- **2. LPg** = Late Paleozoic glacial
- **3. PI** = Pre-Industrial (interglacial)
- **4. LGM** = Last Glacial Maximum (glacial)

	LPig	LPg	PI	LGM
Land ice geography	Unipolar low	Unipolar high	Bipolar low	Bipolar high
Radiative forcing	792 ppb CH ₄ 276 ppb N ₂ O 560 ppm CO ₂ 97.5% solar	792 ppb CH ₄ 276 ppb N ₂ O 280 ppm CO ₂ 97.5% solar	792 ppb CH₄ 276 ppb N₂O 280 ppm CO₂ 100% solar	350 ppb CH ₄ 200 ppb N ₂ O 185 ppm CO ₂ 100% solar
Land-sea distribution	Supercontinent (high sea level)	Supercontinent (low sea level)	Modern (high sea level)	Modern (low sea level)

Glacial and interglacial simulations

Four fully-coupled water isotope-enabled CESM simulations:

- 1. **LPig** = Late Paleozoic interglacial
- **2. LPg** = Late Paleozoic glacial
- **3. PI** = Pre-Industrial (interglacial)
- **4. LGM** = Last Glacial Maximum (glacial)

	LPig	LPg	PI	LGM
Land ice geography	Unipolar low	Unipolar high	Bipolar low	Bipolar high
Radiative forcing	792 ppb CH₄ 276 ppb N₂O 560 ppm CO₂ 97.5% solar	792 ppb CH ₄ 276 ppb N ₂ O 280 ppm CO ₂ 97.5% solar	792 ppb CH₄ 276 ppb N₂O 280 ppm CO₂ 100% solar	350 ppb CH ₄ 200 ppb N ₂ O 185 ppm CO ₂ 100% solar
Land-sea distribution	Supercontinent (high sea level)	Supercontinent (low sea level)	Modern (high sea level)	Modern (low sea level)

Vegetation and orbital parameters are the same, so we are testing the *combined* effects of three main differences

Globally atmosphere is moister and rainier with warmer temperatures

Quaternary:

2.4%个 K⁻¹ warming

Late Paleozoic: 3.6%个 K⁻¹ warming Interglacial phases have higher tropical rainfall

Quaternary: 3.2%个 K⁻¹ warming

Late Paleozoic: 6.4%↑ K⁻¹ warming

mm/day

Higher evaporation in interglacial states

Annual surface evaporative flux increases with higher surface temperatures, particularly in coastal regions with sea level rise

Higher evaporation in interglacial states

Fraction of ocean surface increases by 32% in LP 14% in Quaternary

Lowland precipitation $\delta^{18}O$ is depleted in glacial intervals

Depleted inland precipitation δ¹8O reflects increased continentality and reduced temperature

Inland regions exhibit the largest changes in precipitation $\delta^{18}O$

- No change in coastal precipitation δ¹8O where moisture source is unaffected by changes in sea level
 - Would not expect $\delta^{18}O_p$ reconstructions from these regions to have large signal in deep time

Model-proxy comparisons of $\delta^{18}O_p$ not possible at present for the Late Paleozoic

- Pedogenic mineral $\delta^{18}O$ formed in fossil soils have only been used to reconstruct $\delta^{18}O_p$ in western Pangea (Tabor & Montanez, 2002; Rosenau et al., 2013)
- iCESM $\delta^{18}O_p$ can be used to identify regions areas with large isotopic change between glacial-interglacial intervals

Preliminary Conclusions

- Late Paleozoic interglacials generally more wet in tropics (in absence of orbital fluctuations or vegetation change)
 - Surface warming with higher CO₂ produces increased evaporation
 - Higher sea level provides robust nearby moisture source for monsoons (even if they are weaker)
- iCESM can help identify regions of interest for reconstructions of $\delta^{18}O_p$ in deep time (e.g. LPIA) where the isotopic signal is sensitive to climate change

Future Work in the Late Paleozoic

- Quantify individual impacts of CO₂, sea level, and ice volume associated with glacial and interglacial states on tropical climate change
- Impact of glacial-interglacial orbital fluctuations on tropical hydroclimate
 - Changes in monsoons induced by orbital fluctuations could explain regionally wetter conditions during a glacial