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347 Participants

224 Poster Presentations
144 Oral Presentations
92 Early Career Scientists
38 Countries

5 Days

Second International Conference on

Subseasonal to Seasonal Prediction (S2S)

« Mechanisms of S2S predictability
* Modelling issues in S2S prediction

Second International Conference on
Seasonal to Decadal Prediction (S2D)

* Mechanisms of S2D predictability
» Modelling issues in S2D prediction

« S2S ensemble predictions and forecast information « S2D ensemble predictions and forecast information

« S28S forecasts for decision making

« S2D forecasts for decision making

* Land & Ocean initialization and processes * Hindcast and forecast quality assessment

» Aerosols & Stratosphere

» Frontiers in Earth system prediction

Plenary cross-cutting themes: .

Initialization, initialization shock and model error
Research and operations
Time scale interactions

Synthesis article:
Merryfield et al.,
submitted to BAMS




Contents of presentation

« Conference presentations of note (very selective)

» Perspectives on understanding biases in prediction systems and key uncertainties that could be
addressed by process studies to improve prediction, informed by

- 2018 S2S/S2D Conferences
- 2017 WGNE workshop on systematic errors in weather and climate models
- personal observations



Impact of ocean observat|on
~-—systems on ocean analyses
| and subseasonal forecasts
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Ocean coupling improves MJO predictability
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Subramanian, A., F. Vitart, C. Zhang, A. Kumar and M. A. Balmaseda 2018

» Ocean data assimilation helps improve forecast skill of some atmospheric variables on

subseasonal timescales

 Further analysis is required to understand the systematic impact of ocean
observations on improved process understanding and forecast skill for S2S timescales
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Natural variability of Southern Ocean convection
as a driver of observed climate trends

Liping Zhang ©'?*, Thomas L. Delworth'?, William Cooke?? and Xiaosong Yang?*?

Weddell sea convection active

a AABW cell time series in control run /
v

20 — ?
- . | |
S
% 45 4
L
5 \‘
c
o
% 10
s | w ]
o
< 5 |

0 T T ' T T T T g T T T T ' T T

0 200 400 600 800 1,000 1,200 1 ,4% 1,600 1,800 2,000

Year . . .
Weddell sea convection inactive



Composite 30y trends

Following active conv. Following inactive conv.
00

Zhang et al., Nat. Clim. Change (2019)
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Composite 30y trends

Following active conv. Following inactive conv. MOC min. 208
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Are some key biases largely due

to under-resolution of topographic 32{3‘:‘1 .
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Figure 1. High atmospheric horizontal resolution eliminates coastal SST bias in the SETA region: (a) coast-following
meridional mean of SST on model grid, averaged 15°S to 25°S; (b) time mean SST bias for HRatm (0.5° horizontal
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Another example: tropica| Correlation of temperature and precipitation anomalies w/ Nino3
(o) NCEP/NCAR Reanalysis (1961-2001)
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Evidence that model biases impact forecast skill

temperature correlation skKkill

GFDL Forecast of TMPZm Anom IC=09 for Lead 3 DJF

Apply model tendency adjustments estimated from nudging to obs
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https://www.cpc.ncep.noaa.gov/products/NMME/

Non Linear and Non Stationary Forecast Errors:

Time to revise the forecast strategy?

Magdalena A. Balmaseda
Frederic Vitart

ECMWEF, Shinfield Park, RG2 9AX, Reading, UK

* It is possible to produce more skilful predictions at extended and seasonal range by correcting
model bias during forecast phase

* It is possible to design a consistent framework for treatment of model bias:

2~ ECMWEF — estimation of model bias during data assimilation phase using observational constrain.

— bias estimate applied during forecast phase. Complementary to stochastic physics
— This should produce improved forecast, easier to calibrate .

« The nudging residuals provide a starting point for experimentation

[Also: assimilation increments are potentially a powerful tool for diagnosing origins of model error]



An approach for assessing development of model errors

* In long-term historical simulations and projections, initial conditions are mostly “forgotten” —
difficult to diagnose origins of model errors

« S25/S2D predictions are (mostly) initialized from model states close to observations —
development of model errors can be tracked

« AWCRP Working Group on Subseasonal to Inderdecadal Prediction (WGSIP) project aims to
facilitate systematic intercomparisons of such behavior

Project web page: https://www.wcrp-climate.org/wgsip-projects/Irftip

S2D Conference poster: https://www.wcrp-
climate.org/images/WWCRP conferences/S2S S2D 2018/pdf/Programme/posters

/presentations/posters C1/P-C1-07-Merryfield.pdf

« Objectives are to
- Provide a resource for systematic studies of the development of model errors
- Develop a set of standard diagnostics for describing error development (“shock” & “drift”)


https://www.wcrp-climate.org/wgsip-projects/lrftip
https://www.wcrp-climate.org/images/WCRP_conferences/S2S_S2D_2018/pdf/Programme/posters/presentations/posters_C1/P-C1-07-Merryfield.pdf

Development of equatorial Pacific SST biases in
decadal predictions

due to spurious changes in NCEP/NCAR reanalysis
wind stress (Teng et al. Clivar Exchanges 2017)

CanCM4 i1 CCSM4 i2 CERFACS—ENSEMBLES i1 CFSv2-2011 i2 GFDL-CM2p1 i1

Forecast time (years)

—

e -
!
160 180 200 220 240 260 280 160 180 200 220 240 260 28C140 160 180 200 220 240 260 28C 160 180 200 220 240 260 28C  —200-180-160-140-120-100-8C

lon lon lon lon lon

ECMWF—ENSEMBLES i1 HadCM3 i3 IFM—ENSEMBLES i1 MIROCS i1 MRI-CGCM3 i1

year

o —

140 160 180 200 220 240 260 28C140 160 180 200 220 240 260 28C140 160 180 200 220 240 260 28C 160 180 200 220 240 260 140 160 180 200 220 240 260 28C
lon lon lon lon lon

F- - | assT(%0)



Development of equatorial Pacific SST biases in

decadal predictions

Forecast time (years)
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5th WGNE workshop on systematic errors in weather and climate models

June 19-23, 2017, Montréal, Québec, Canada
SYSTEMATIC ERRORS IN WEATHER

AND CLIMATE MODELS

Nature, Origins, and Ways Forward

BAMS 2018

AYRTON ZADRA, KEITH WiLLIAMS, ARIANE FRASSONI, MicHEL RIXeN, ANGEL F. ADAMES, JUDITH BERNER,

FrANGOIS BouysseL, BARBARA CAsATI, HANNAH CHRISTENSEN, MicHAEL B. Ek, GReG FLATO, Yi HUANG,

FaLko JupT, Hai LiN, Eric MALONEY, WILLIAM MERRYFIELD, ANNELIZE VAN NIEKERK, THOMAS RAcKow,
Kazuo SaiTo, NiLs WEDI, AND PRIYANKA YADAV

Errors addressed in presentations:

e convective precipitation—diurnal cycle (timing and intensity); the organization of convective ~ ® surface drag—biases, variability, and predictability of large-scale dynamics are shown to be
systems; precipitation intensity and distribution; and the relationship with column-integrated sensitive to surface drag; CMIP5 mean circulation errors are consistent with insufficient
water vapor, SST, and vertical velocity; drag in models;

e cloud microphysics—errors linked to mixed-phase, supercooled liquid cloud, and warmrain;  ® systematic errors in the representation of heterogeneity of soil;

e precipitation over orography—spatial distribution and intensity errors; e stochastic physics—current schemes, while beneficial, do not necessarily/sufficiently

. ) . capture all aspects of model uncertainty;
¢ MJO modeling—propagation, response to mean errors, and teleconnections;

e outstanding errors in the modeling of surface fluxes; errors in the representation of the

e subtropical boundary layer clouds—still underrepresented and tending to be too bright in diurnal cycle of surface temperature;

models; their variation with large-scale parameters remains uncertain; and their
representation may have a coupled component/feedback; e errors in variability and trends in historical external forcings;

¢ double intertropical convergence zone/biased ENSO—a complex combination of westward @ challenges in the prediction of midlatitude synoptic regimes and blocking;

ENSO overextension, cloud—ocean interaction, and representation of tropical instability
waves (TIW);

e model errors in the representation of teleconnections through inadequate stratosphere—
troposphere coupling; and

e tropical cyclones—high-resolution forecasts tend to produce cyclones that are too intense,
although moderate improvements are seen from ocean coupling; wind—pressure
relationship errors are systematic;

e model biases in mean state, diabatic heating, SST; errors in meridional wind response and
tropospheric jet stream impact simulations of teleconnections.

— Need + Improved treatments of cloud microphysics and boundary layer processes to reduce uncertainties in low-cloud radiative feedbacks
* Process studies leading to reduced tropical convection and rainfall biases in convection-permitting models
« Improved treatments of coupled processes — model physics at root of long-term predictability, development of coupled data assimilation



Conclusions

* Model biases have gradually improved over time, but remain problematic

« Same issues have persisted over time: tropical SST/precipitation biases, ENSO westward extension,
insufficient low clouds over eastern subtropical oceans, precipitation diurnal cycle...

« Some biases evidently due to insufficient resolution for capturing topographic influences on
atmosphere and ocean

« Others surely sue to inadequate parameterizations

« Systematic intercomparisons of bias development in coupled prediction models may provide clues
(likewise for data assimilation increments)

Also,
« Simulation and S2S prediction of MJO remains problematic in many models

« A pervasive issue in S2D prediction is a “signal to noise paradox” (Scaife and Smith, npj Atmospheric
Sci. 2018) —» some predictable signal in models are weaker than in real world



