Water Isotope Modeling

Why isotope-enabled models?

• Water isotopes can be used to identify, constrain, and improve issues in climate model physics, chemistry and biology.

Why isotope-enabled models?

- Water isotopes can be used to identify, constrain, and improve issues in climate model physics, chemistry and biology.
- Isotope-enabled models are useful tools for the interpretation of paleoclimate records.

SWING2

Table 1. Model Name, Key Reference, Resolution, and Simula-tions Considered in This Publication

Model	Key Reference	Simulations	Grid Resolution
CAM2	Lee et al. [2007]	Free	$2.8^{\circ} \times 2.8^{\circ}$
ECHAM4	Hoffmann et al. [1998]	Nudged with ECMWF	$2.8^{\circ} \times 2.8^{\circ}$
MIROC	Kurita et al. [2011]	Free	$2.8^{\circ} \times 2.8^{\circ}$
GENESIS3	Mathieu et al. [2002]	Free	$3.75^{\circ} \times 3.75^{\circ}$
LMDZ4	<i>Risi et al.</i> [2010]	Free and nudged with ECMWF	$2.5^{\circ} \times 3.75^{\circ}$
GISS	Schmidt et al. [2007]	Free and nudged with NCEP	$2^{\circ} \times 2.5^{\circ}$
GSM	Yoshimura et al. [2008]	Free and nudged with NCEP	$1.9^{\circ} \times 1.9^{\circ}$
HadAM3	Sime et al. [2009]	Free	$2.5^{\circ} \times 3.75^{\circ}$
HadCM3	Tindall et al. [2009]	Free (no SST forcing)	$2.5^{\circ} \times 3.75^{\circ}$

From Conroy et al., 2013

SWING2

Table 1. Model Name, Key Reference, Resolution, and Simula-tions Considered in This Publication

Model	Key Reference	Simulations	Grid Resolution	
CAM2 ECHAM4	<i>Lee et al.</i> [2007] Hoffmann et al.	Free Nudged with ECMWF	$\frac{2.8^{\circ} \times 2.8^{\circ}}{2.8^{\circ} \times 2.8^{\circ}}$	CAM5 [Nusbaumer et al., 2017]
MIROC	[1998] Kurita et al. [2011]	Free	$2.8^{\circ} \times 2.8^{\circ}$	ECHAM5 [Werner et al., 2011]
GENESIS3 LMDZ4	Mathieu et al. [2002] Risi et al. [2010]	Free Free and nudged with	$3.75^{\circ} \times 3.75^{\circ}$ $2.5^{\circ} \times 3.75^{\circ}$	
GISS	Schmidt et al. [2007]	ECMWF Free and nudged with	<u>2°×2.5°</u>	• ModelE2.1 [Field et al.,
GSM	<i>Yoshimura et al.</i> [2008]	NCEP Free and nudged with NCEP	1.9°×1.9°	• GSM2 [Prasanna et al.,
HadAM3 HadCM3	Sime et al. [2009] Tindall et al. [2009]	Free Free (no SST forcing)	$2.5^{\circ} \times 3.75^{\circ}$ $2.5^{\circ} \times 3.75^{\circ}$,

From Conroy et al., 2013

Multiple models have advanced since SWING2, indicating that an update to SWING may be needed.

Fully-coupled models

• "Fully-coupled" climate models are those that simulate all components of the climate system, specifically the atmosphere, ocean, land-surface, and sea ice (and occasionally land ice).

• Fully-coupled models are necessary for paleoclimate simulations.

• Over the past several years there has been a rapid increase in the number of isotope-enabled GCMs that are fully-coupled.

Fully-coupled models

- HadCM3 [Tindall et al., 2009]
- GISS ModelE2.1 [e.g. Field et al., 2014]

Fully-coupled models

- HadCM3 [Tindall et al., 2009]
- GISS ModelE2.1 [e.g. Field et al., 2014]
- MPI-ESM (with ECHAM5) [Werner et al., 2016]
- CESM1 [Brady et al., 2019]

Additional models being worked on include:

- -IPSL
- EC-Earth
- -GFDL

Isotope-enabled Ocean Models

Papers describing isotope-enabled ocean models:

- GISS (Russell) ocean model [Schmidt, 1999]
- MPI-OM [Xu et al., 2012]
- POP2 [Zhang et al., 2017]

Other ocean models include:

- HadCM3 ocean model [Tindall et al., 2009]
- NEMO [not sure if published yet?]

From Schmidt, 1999

Land Surface models

- GISS LSM [Aleinov and Schmidt, 2006]
- MATSIRO [Yoshimura et al., 2006]
- HadCM3 LSM [Tindall et al., 2009]
- JS-BACH [Haese et al., 2013]
- ORCHIDEE [Risi et al., 2017]
- CLM4 [Wong et al., 2017]

From Wong et al., 2017

Several other isotope-enabled LSMs not (to my knowledge) associated with GCMs also exist, which are not listed here.

Expanded model capabilities

Additional model capabilities/advancements include:

Single-column models (SCMs) [Bony et al., 2008; Risi et al., 2008].

Expanded model capabilities

Additional model capabilities/advancements include:

- Single-column models (SCMs) [Bony et al., 2008; Risi et al., 2008].
- High-top models [Eichinger et al.,2015]

Expanded model capabilities

Additional model capabilities/advancements include:

- Single-column models (SCMs) [Bony et al., 2008; Risi et al., 2008].
- High-top models [Eichinger et al.,2015]
- Water-tagging [Werner et al., 2001; Risi et al., 2010b; Lewis et al., 2010; Buenning et al., 2013; Nusbaumer and Noone, 2018]

High-resolution modeling

• High-resolution models are an important tool for process-level studies, particularly when analyzing field campaigns.

High-resolution modeling

- High-resolution models are an important tool for process-level studies, particularly when analyzing field campaigns.
- They can be used to (dynamically) down-scale GCM results to a particular site location, including paleoclimate proxy sites.

High-resolution modeling

- High-resolution models are an important tool for process-level studies, particularly when analyzing field campaigns.
- They can be used to (dynamically) down-scale GCM results to a particular site location, including paleoclimate proxy sites.
- There is the potential to involve water isotopes in weather forecasting.

Weather/Regional Climate models

- REMOiso [Sturm et al., 2005]
- COSMOiso [Pfahl et al., 2012]
- IsoRSM [Yoshimura et al., 2010]

From Pfahl et al., 2012

Cloud-resolving models

- REMOiso [Sturm et al., 2005]
- COSMOiso [Pfahl et al., 2012]
- IsoRSM [Yoshimura et al., 2010]
- Isotope-enabled SAM [Blossey et al., 2010]
- Isotope-enabled WRF [Moore et al., 2013]

Large Eddy Simulation models

- REMOiso [Sturm et al., 2005]
- COSMOiso [Pfahl et al., 2012]
- IsoRSM [Yoshimura et al., 2010]
- Isotope-enabled SAM [Blossey et al., 2010]
- Isotope-enabled WRF [Moore et al., 2013]
- DHARMA [Smith et al., 2006]
- ISOLESC [Wei et al., 2019]

Mesoscale Ocean models

- REMOiso [Sturm et al., 2005]
- COSMOiso [Pfahl et al., 2012]
- IsoRSM [Yoshimura et al., 2010]
- Isotope-enabled SAM [Blossey et al., 2010]
- Isotope-enabled WRF [Moore et al., 2013]
- DHARMA [Smith et al., 2006]
- ISOLES [Lee et al., 2012]
- isoROMS [Stevenson et al., 2015]

Future High-res models

- REMOiso [Sturm et al., 2005]
- COSMOiso [Pfahl et al., 2012]
- IsoRSM [Yoshimura et al., 2010]
- Isotope-enabled SAM [Blossey et al., 2010]
- Isotope-enabled WRF [Moore et al., 2013]
- DHARMA [Smith et al., 2006]
- ISOLES [Lee et al., 2012]
- isoROMS [Stevenson et al., 2015]
- Others in development (SP-CAM,NICAM,etc.)

General Issues

- Isotope-enabled models are almost always behind the regular model in terms of physics improvements/updates, or on their own "branch" such that it doesn't always represent the latest version of the regular model.
- The modern isotopic records we currently have are not ideal for model development/validation (too sparse, too short, certain quantities not usually observed).
- The perception of water isotopes outside the geochem and paleo communities as too niche (i.e. why should we invest in isotopes when we can instead invest in <insert other model feature here>)?

Thanks for listening!

Questions?