
Rainfall characteristics 
in CMIP models

Angeline Pendergrass
National Center for Atmospheric Research



• To accurately simulate atmospheric circulation and coupled climate 
system interactions affected by fluxes of water and energy, which 
affect the ocean, land surface, biosphere, and cryosphere
• Precipitation is a primary manifestation of climate influencing the 

natural and human-managed environment, and people, and so it 
should be a key variable in climate models
• Many impacts of climate change are driven by precipitation, and users 

are increasingly trying to extract information about future 
precipitation from climate model projections – often indirectly (via 
downscaling, bias correction, …) 
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Why improve precipitation in climate models?



• To accurately simulate atmospheric circulation and coupled climate 
system interactions affected by fluxes of water and energy, which 
affect the ocean, land surface, biosphere, and cryosphere
• Precipitation is a primary manifestation of climate influencing the 

natural and human-managed environment, and people, and so it 
should be a key variable in climate models
• Many impacts of climate change are driven by precipitation, and users 

are increasingly trying to extract information about future 
precipitation from climate model projections – often indirectly (via 
downscaling, bias correction, …)
• Nonetheless, we often hear that precipitation isn’t that good in 

climate models
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Why impove precipitation in climate models?



• Precipitation in CMIP5 models
• The distribution of precipitation
• Re-corfirming light rain bias
• Unevenness of contributions from heavy precipitation

• Evaluating precipitation in CMIP models (ongoing work)

• Thoughts about future work and efforts
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CMIP5 daily precipitation distribution
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CMIP5 daily precipitation distribution
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Observed daily precipitation distribution
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CMIP5 rain amount 
distributions: Global 
● Distribution calculated at each 

grid point, then globally 
averaged

● Compared against GPCP 1dd 
coarsened to model grid

Pendergrass and Hartmann (2014) J Clim
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Observed zonal mean rain amount distribution

Specifically, the rain amount width is the ratio of the two
rain rates where a line of constant rain amount intersects
the rain amount distribution: it is expressed nondimen-
sionally as the ratio of the greater to the lesser of these
rain rates. We have chosen a width such that 10% of the
total precipitation occurs in this portion of the rain
amount distribution, as illustrated in Fig. 2a for the
global annual mean. In the event that the rain amount
distribution crosses the line of constant rain amount
more than twice, the first rain rate it intersects on each
side of the rain amount peak is chosen. The choice of

10% as a target fraction is arbitrary; we also tried 50%,
which resulted in a change in magnitude but did not
affect the geographical patterns or seasonal de-
pendence. The rain amount width describes the range of
rain rates where the most rain falls. The width of the
global mean rain amount distribution is 2.2, indicating
that 10% of the total precipitation falls between 9 and
30mmday21.
We expect that the rain amount peak, rain frequency

peak, and rain amount width will depend quantitatively
but not qualitatively on the spatial and temporal reso-
lution of the precipitation data from which they are
computed. However, they do not depend systematically
on the bin width, although the bin width does determine
how accurate themetrics are (smaller bin widths provide
finer granularity of the metrics, although they also re-
quiremore sampling).We provide quantitative values of
all three metrics, cognizant that they are specific to the
spatial and temporal resolution of the particular datasets
we examine.

4. The climatological distribution of rain in GPCP

a. The zonal-mean distribution of rain

We decompose the global mean rain amount distri-
bution from GPCP into contributions from different
latitudes in Fig. 3a. Note that the latitude axis is cosine
weighted, proportional to the areal contribution of each
latitude band. The peak of the rain amount distribution
at each latitude is delineated by the thin black curve.
Integration of the rain amount distribution at each

FIG. 2. The climatological distribution of global, annual mean
(a) rain amount and (b) rain frequency from GPCP 1DD from
October 1996 to October 2015. The red star denotes the rain
amount peak in (a) and the rain frequency peak in (b). In (a), the
horizontal blue line indicates the width of the rain amount distri-
bution: see text for details. In (b), the dry-day frequency is given in
the top left of the panel. This figure is updated from Pendergrass
and Hartmann (2014a).

FIG. 3. (a) Climatological zonal, annual-mean rain amount
(mmday21) distribution from GPCP 1DD based on data from
October 1996 to October 2015. The black curve shows the rain
amount peak at each latitude, smoothed with three successive ap-
plications of a 1–2–1 filter. (b) As in (a), but for total precipitation
(mmday21) from the same dataset.
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CMIP5 rain amount 
distributions: Zonal 
mean
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Zonal mean rain amount distributions

consistent with its higher frequency of light rain days,
which play little role in the rain amount distribution
width. It also shares more characteristics with TRMM
than GPCP, including reaching minima rather than
maxima in dry zones and reaching maxima rather than
minima near the midlatitude storm tracks.

7. Discussion

As we have just shown, CESM1 has a much higher
frequency of light rain than either GPCP or TRMM and
correspondingly lower values of rain frequency peak,
especially over the subtropical oceans. While we know
that climate models disagree about some of the physical
processes controlling stratocumulus clouds in the east-
ern side of the subtropical ocean basins (e.g., Fasullo and
Trenberth 2012; Medeiros et al. 2012; Sherwood et al.
2014), we also know that the satellite measurements

incorporated into GPCP and TRMM are not sensitive
enough to light precipitation below about 1mmday21

(Behrangi et al. 2012, 2014), which are especially im-
portant for obtaining the correct rain frequency distri-
bution (Huffman et al. 2001, 2007). Other datasets such
as CloudSat radar and CALIPSO lidar measurements
accurately represent the frequency of occurrence of
rain, including very light rain (e.g., Lebsock and
L’Ecuyer 2011), but cannot accurately estimate the rain
rate for moderate to heavy precipitation. They also have
insufficient sampling to form the basis for high spatial
and temporal resolution gridded datasets likeGPCP and
TRMM. Even considering the frequency of light pre-
cipitation observed by CloudSat, it is still likely that
climate models overestimate the frequency of light
rainfall (Stephens et al. 2010). However, more and im-
proved observations of light precipitation are needed to
better understand this discrepancy. The new Global

FIG. 15. Comparison between climatological zonal annual-mean distributions of (top) rain amount (mm day21) and (bottom) rain
frequency (%) for (a),(d) GPCP 1DD, (b),(e) TRMM 3B42 (coarsened to 18 resolution), and (c),(f) CESM1.
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proved observations of light precipitation are needed to
better understand this discrepancy. The new Global

FIG. 15. Comparison between climatological zonal annual-mean distributions of (top) rain amount (mm day21) and (bottom) rain
frequency (%) for (a),(d) GPCP 1DD, (b),(e) TRMM 3B42 (coarsened to 18 resolution), and (c),(f) CESM1.
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Zonal mean distributions
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consistent with its higher frequency of light rain days,
which play little role in the rain amount distribution
width. It also shares more characteristics with TRMM
than GPCP, including reaching minima rather than
maxima in dry zones and reaching maxima rather than
minima near the midlatitude storm tracks.

7. Discussion

As we have just shown, CESM1 has a much higher
frequency of light rain than either GPCP or TRMM and
correspondingly lower values of rain frequency peak,
especially over the subtropical oceans. While we know
that climate models disagree about some of the physical
processes controlling stratocumulus clouds in the east-
ern side of the subtropical ocean basins (e.g., Fasullo and
Trenberth 2012; Medeiros et al. 2012; Sherwood et al.
2014), we also know that the satellite measurements

incorporated into GPCP and TRMM are not sensitive
enough to light precipitation below about 1mmday21

(Behrangi et al. 2012, 2014), which are especially im-
portant for obtaining the correct rain frequency distri-
bution (Huffman et al. 2001, 2007). Other datasets such
as CloudSat radar and CALIPSO lidar measurements
accurately represent the frequency of occurrence of
rain, including very light rain (e.g., Lebsock and
L’Ecuyer 2011), but cannot accurately estimate the rain
rate for moderate to heavy precipitation. They also have
insufficient sampling to form the basis for high spatial
and temporal resolution gridded datasets likeGPCP and
TRMM. Even considering the frequency of light pre-
cipitation observed by CloudSat, it is still likely that
climate models overestimate the frequency of light
rainfall (Stephens et al. 2010). However, more and im-
proved observations of light precipitation are needed to
better understand this discrepancy. The new Global

FIG. 15. Comparison between climatological zonal annual-mean distributions of (top) rain amount (mm day21) and (bottom) rain
frequency (%) for (a),(d) GPCP 1DD, (b),(e) TRMM 3B42 (coarsened to 18 resolution), and (c),(f) CESM1.

6000 JOURNAL OF CL IMATE VOLUME 30

12

GPCP 1dd TRMM 3b42 CESM1

GPCP 1dd TRMM 3b42 CESM1



Zonal mean rain frequency distributions
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consistent with its higher frequency of light rain days,
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Light rain bias persists in 
CESM1 compared to 
CloudSat

● CloudSat captures light rain 
frequency more accurately 
than measurements going into 
GPCP, TRMM, and GPM 

● Satellite simulators for 
precipitation enable apples-to-
apples comparison

● Extends work on cloud satellite 
simulators – could be scaled 
across models, and to GPM 

2.3. Sources of Uncertainty for the Diagnostics Used in This Study

By construct, the precipitation frequency diagnostics introduced in this study are directly comparable to
CloudSat observations. Nevertheless, instrument noise and diurnal sampling can both introduce uncertainty.
To help quantify the influence of these two sources of uncertainty and assess if they are first-order drivers of
detected differences, we completed sensitivity tests using CESM1 (see supporting information). The CESM1
sensitivity tests revealed that instrument noise and diurnal sampling contribute little to the model biases
identified in this work. Based on these CESM1 sensitivity tests and previous work, differences between
modeled and observed precipitation frequency identified in this study originate from three sources: (1) biases
in model precipitation frequency, (2) biases in model microphysics that affect the forward calculation of radar

Figure 3. Present annual zonal mean near-surface rain: (a) CESM1 and observed CloudSat light rain frequency, (b) CESM1 light rain frequency bias, (c) CESM1 and
observed CloudSat rain frequency, (d) CESM1 CloudSat rain frequency bias, (e) CESM1 and observed CloudSat heavy rain, (f) CESM1 CloudSat heavy rain bias.
CESM1 values are from simulation named “CESM1 Present” (see Table 1 for details). Reflectivity-based definitions of the three reported rain classes are the same in
observations and CESM1 (see Table 2). CloudSat observations are from 2006 to 2015. Global annual mean values are reported in parenthesis.

Figure 2. CESM1 probability distribution functions of daily mean simulated near-surface (480–960 m) CloudSat radar reflectivity (dBZ) and daily mean total precipi-
tation: (a) joint probability, (b) conditional probability of dBz given daily mean total precipitation. Data are from the CESM1 present-day simulation (Table 1).
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Light rain bias persists in 
CESM1 compared to 
CloudSat

● CloudSat captures light rain 
frequency more accurately 
than measurements going into 
GPCP, TRMM, and GPM 

● Satellite simulators for 
precipitation enable apples-to-
apples comparison

● Extends work on cloud satellite 
simulators – could be scaled 
across models, and to GPM 
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reflectivity, and (3) uncertainty in the generation of subcolumns. The
CESM1 biases shown here are an aggregate of these three effects,
and distinguishing between them requires methods that are beyond
the scope of this study.

3. Results
3.1. Evaluation of CESM1 Present-Day Precipitation Frequency
Using CloudSat Observations
3.1.1. Modeled and Observed Rain Frequency
We begin by evaluating rain frequency in present-day fully coupled
CESM1 simulations (Table 1). Specifically, we compare CloudSat-
observed and CloudSat-simulated near-surface rain frequency. Our
evaluation of rain frequency includes three reflectivity-based rain
intensity classes: CloudSat light rain, CloudSat rain, and CloudSat
heavy rain (Table 2). Global mean comparisons indicate that CESM1
has excessive CloudSat light rain (Figures 3a and 3b, frequency bias
+12.5%) and CloudSat rain (Figures 3c and 3d, frequency bias
+4.8%), but insufficient CloudSat heavy rain (Figures 3e and 3f,
frequency bias !0.2%). Excessive CloudSat light rain is an especially
pronounced CESM1 bias. For example, in the annual global mean
CESM1 produces CloudSat light rain (15.4%) more frequently than
CloudSat rain (10.4%). In contrast, annual global mean CloudSat
observations show that CloudSat rain (5.6%) occurs more frequently
than CloudSat light rain (2.9%). While excessive CloudSat light rain
frequency biases are particularly striking, rain frequency biases occur
in all three rain intensity classes. We next discuss each rain intensity
class in turn, including evaluation of zonal mean distributions
(Figure 3) and global spatial distributions for CloudSat light rain
frequency (Figure 4), CloudSat rain frequency (Figure 5), and
CloudSat heavy rain frequency (Figure 6).

As introduced above, differences between observed and modeled
rain frequency are largest for the lightest rain intensity class examined—CloudSat light rain. CESM1 produces
CloudSat light rain ~5 times more often than observed in the global annual mean (Figure 3a). Zonal annual
mean plots show CloudSat light rain occurs too frequently at all latitudes in CESM1 (Figure 3a). In addition to
magnitude biases, the maximum CloudSat light rain frequency occurs at the wrong latitude. While the
observed CloudSat light rain peaks in Southern Hemisphere midlatitude storm track, CESM1 produces the
maximum CloudSat light rain in the Tropics close to the equator (Figure 3a). Global maps show that the over-
estimation of CloudSat light rain occurrence is especially prominent in the subtropical low cloud decks off the
West coasts of the Americas and Africa, the intertropical convergence zone (ITCZ), and equatorial land areas
with convection (Figure 4).

Similar to CESM1 CloudSat light rain biases, CloudSat rain also occurs too often in CESM1. Specifically, it rains
~2 times more frequently in CESM1 than it does in CloudSat observations in the global annual mean. While
the global annual mean primarily reflects excessive rain over the ocean and tropical land, insufficient
CloudSat rain falls over midlatitude land (e.g., 50–70°N in Figure 3c). Insufficient CloudSat rain over midlati-
tude land regions in CESM1 is a consequence of the relatively high 5-dBZ threshold required to detect
CloudSat rain over land (Table 2). While CESM1 rains too often, the CESM1-modeled zonal mean pattern of
CloudSat rain frequency has many similarities with the observations. Both the model and observations exhi-
bit maxima in zonal mean CloudSat rain frequency in the tropical rain belts and the midlatitude storm tracks
(Figures 3c and 5). Both CESM1 and observations show greater rain frequency in the Southern midlatitude
storm track than in the Northern midlatitude storm track. While CloudSat rain occurs more frequently north
of the equator than south of the equator in both observations and CESM1, CESM1 has excessive CloudSat rain
frequency at 5°S, consistent with the well-known “double ITCZ” bias.

Figure 4. Global map of present-day CloudSat light rain frequency: (a) observed,
(b) CESM1. CESM1 values are from simulation named “CESM1 Present” (see
Table 1 for details). CloudSat light rain is defined as the near-surface (720–960 m)
having a radar reflectivity as follows: !15 < dBZ < 0 (Table 2).

10.1002/2017JD028213Journal of Geophysical Research: Atmospheres

KAY ET AL. 4300
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Unevenness of precipitation

Pendergrass and Knutti (2018) GRL

One year of daily precip
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Cumulatively sum
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Unevenness of precipitation in observations and CMIP5 models
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Assessing simulation of precipitation 
in Earth System Models

● Inspired by the lack of objective and systematic 
benchmarking of simulated precipitation 

● Date/venue: July 1-2, 2019 in Rockville, MD

Develop capability 
to gauge model 
quality 
Baseline metrics 
incorporated into a model 
evaluation capability and 
used to assess current 
models

Identify targets 
for improvement 

Team of experts identifies 
useful measures for 
gauging how well models  
simulate precipitation

Improve simulated
Precipitation

Modelers provided with 
metrics capability to serve as 
a target for improving newer 
model versions

https://climatemodeling.science.energy.gov/news/doe-host-precipitation-metrics-workshop

Renu Joseph (DOE), Angie Pendergrass (NCAR), Peter Gleckler (LLNL), 
Christian Jakob (Monash Uni), Ruby Leung (PNNL)
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https://climatemodeling.science.energy.gov/news/doe-host-precipitation-metrics-workshop
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Seasonal 
cycle

Variability 
across 

timescales

Intensity / 
frequency 

distributions

Extremes

Drought (lack 
of precip)

19

Scope of phase 1: CMIP6 DECK + 
Historical simulations with standard 
output

• piControl
• AMIP
• 1pctCO2, abrupt4xCO2
• Historical
• Data: monthly, daily, and 3h 

mean precip, monthly prsn

http://clipc-services.ceda.ac.uk/dreq/tabs03/expt_CMIP_CMIP_1_1.html
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Baseline metrics: Tiers

Spatial 

distribution of 
mean state

RMS error / MAE of 

mean state

Pattern correlation

Monthly mean snow 

amount

Seasonal cycle

Amplitude+phase of 

seasonal cycle (first 
two harmonics)

or: Monthly score 

(RMS error?) following 
iLAMB

Variability 

across 
timescales

Standard deviation at 

different timescales

• Daily, weekly / synoptic, 
intraseasonal, interannual, 
ENSO

• Absolute and relative 

• Seasonal breakdown

Diurnal cycle – phase 

and amplitude

Intensity / 

frequency 
distributions

Simple Daily Intensity 

Index (SDII)

Unevenness (number 

of days for half of 
annual precip)

Mean and variance of 

daily precip

• Cutoff precip rate

• Power law scale

Perkins score 

(goodness of fit) -
various moments

Fraction of precipitating 

days

Extremes

Rx1day

Rx5day 

20-y return values 

(from GEV)

Rx3h

Seasonal breakdown

Drought (lack 

of precip)

Frequency of SPI 

spells below a 
threshold

Consecutive Dry Days

20
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Baseline metrics: CMIP6 evaluation

• Baseline metrics will be incorporated into the PCMDI Metrics 
Package (PMP) and run on simulations in the CMIP archive, as 
well as a suite of observational datasets (likely FROGS, Roca 
et al., 2019)

• An initial study and report will use the baseline metrics to 
evaluate CMIP6 DECK and Historical simulations

• And also compare them against previous generations (CMIP3 and 5) 
to evaluate change over time 

• Simultaneously, an effort on Exploratory Metrics is including 
more process-oriented diagnostics

21



• Working with observations
• Understanding differences among observational datasets for moments 

beyond mean precipitation – its intensity distribution, and variability across 
timescales
• Developing a gridded observational dataset focused on the higher moments 
• Quantifying uncertainty

• Intriguing process-oriented model development approach: 
Stochastic parameterization

• Focused effort on improving precipitation for the next generation of 
climate models, using the precipitation benchmarking as a guide

8/3/19 22

Future studies to address biases in CMIP models
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Stochastic parameterizations can improve monsoon precip.

Strømmen et al., (2017) Climate Dynamics
23

GPCP Control (deterministic) - GPCP

SKEBS (stochastic)  - GPCP SPPT (stochastic)  - GPCP



Questions / Comments?

apgrass@ucar.edu
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mailto:apgrass@ucar.edu
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Precipitation variability: Power spectral density change 
from present to RCP8.5
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Precipitation variability: Power spectral density change 
from present to RCP8.5
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Precipitation variability: Power spectral density 
change from present to RCP8.5

	

	 10 

 

 

 

Figure S6. Change in power spectral density. Ensemble and globally-averaged change 

in power spectra of daily and monthly data with warming for CMIP5, CESM, and GFDL 

ensembles. Error bars indicate 95% confidence. See Supplementary Text for details.  

 

Pendergrass et al (2017) Scientific Reports

How much precipitation change is 
a simple projection of increased 
moisture onto variability that is 
mostly white? (Perhaps a lot)

Is this realistic?  
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Beyond the baseline: Exploratory metrics

28

• Standard metrics decomposed into their components contributing to 
model biases

• Metrics relating model biases to processes or phenomena to inform 
model development

• Relationships that connect model biases to their regional-to-global 
implications

• Emergent relationships that connect model biases to model responses 
to perturbations

• Use-inspired metrics connected with impacts
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Exploratory metrics: Hierarchy
Space and time 
scales

Phenomena and impacts Relationships and 
processes

Mean state Relationships between variables such 
as: 
- P-moisture
- P-T
- P-omega
- P-MSE
- P-entrainment/trigger

Seasonal cycle Monsoon regional features (e.g., monsoon 
depression, Meiyu rainfall jump), precipitation 
in Mediterranean climate

Synoptic Frontal, extratropical cyclones, atmospheric 
rivers

Sub-daily Orographic precipitation, mesoscale 
convective systems

Teleconnection relationships such as:
- Influence of ENSO-PNA on P
- MJO-TC connection and impacts 

on P
- MJO-AR connection and impacts 

on P

PDF Intensity-duration-frequency curve

Extremes Tropical cyclones, severe convective storms, 
compound extremes, composites of top 10 
events Emergent relationships to constrain 

projected changes in PTropical variability

Mid-to-high latitude 
variability



CMIP5 rain frequency 
distributions: Zonal 
mean

Rain amount
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