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Why improve precipitation in climate models?

* To accurately simulate atmospheric circulation and coupled climate
system interactions affected by fluxes of water and energy, which
affect the ocean, land surface, biosphere, and cryosphere

* Precipitation is a primary manifestation of climate influencing the
natural and human-managed environment, and people, and so it
should be a key variable in climate models

* Many impacts of climate change are driven by precipitation, and users
are increasingly trying to extract information about future
precipitation from climate model projections — often indirectly (via
downscaling, bias correction, ...)




Why impove precipitation in climate models?

e To accurately simulate atmospheric circulation and coupled climate
system interactions affected by fluxes of water and energy, which
affect the ocean, land surface, biosphere, and cryosphere

* Precipitation is a primary manifestation of climate influencing the
natural and human-managed environment, and people, and so it
should be a key variable in climate models

* Many impacts of climate change are driven by precipitation, and users
are increasingly trying to extract information about future
precipitation from climate model projections — often indirectly (via
downscaling, bias correction, ...)

* Nonetheless, we often hear that precipitation isn’t that good in




Outline

* Precipitation in CMIP5 models
* The distribution of precipitation
e Re-corfirming light rain bias
* Unevenness of contributions from heavy precipitation

 Evaluating precipitation in CMIP models (ongoing work)

* Thoughts about future work and efforts




CMIP5 daily precipitation distribution
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CMIP5 daily precipitation distribution
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Observed daily precipitation distribution
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CMIP5 rain amount
distributions: Global

o Distribution calculated at each
grid point, then globally
averaged

e Compared against GPCP 1dd
coarsened to model grid

Pendergrass and Hartmann (2014) J Clim
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Observed zonal mean rain amount distribution
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CMIP5 rain amount
distributions: Zonal
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Zonal mean rain amount distributions
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Rain amount (mm/d)

Rain frequency (%)
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Rain frequency (%)
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Zonal mean rain frequency distributions
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Light rain bias persists in
CESM1 compared to
CloudSat

e CloudSat captures light rain
frequency more accurately
than measurements going into
GPCP, TRMM, and GPM

o Satellite simulators for
precipitation enable apples-to-
apples comparison

o Extends work on cloud satellite

simulators - could be scaled
across models, and to GPM

Kay et al (2018) JGR
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One year of daily precip

Sort wettest to dryest

Cumulatively sum

Normalize by total precip

Pendergrass and Knutti (2018) GRL
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Unevenness of precipitation in observations and CMIP5 models
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@PAMD! Assessing simulation of precipitation
in Earth System Models

Identify targets Develop capability Improve simulated

for improvement a :ﬁjgﬁ&ge et e Precipitation

Team of experts identifies Baseline metrics

useful measures for incorporated into a model

gauging how well models evaluation capability and

simulate precipitation used to assess current
models

Modelers provided with
metrics capability to serve as
a target for improving newer
model versions

« Inspired by the lack of objective and systematic
benchmarking of simulated precipitation
o Date/venue: July 1-2, 2019 in Rockville, MD

[ " e B Renu Joseph (DOE), Angie Pendergrass (NCAR), Peter Gleckler (LLNL),
LLE Pacific Northwest. h NCAR Christian Jakob (Monash Uni), Ruby Leung (PNNL)



https://climatemodeling.science.energy.gov/news/doe-host-precipitation-metrics-workshop

Baseline metrics
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http://clipc-services.ceda.ac.uk/dreq/tabs03/expt_CMIP_CMIP_1_1.html

Baseline metrics: Tiers
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Baseline metrics: CMIP6 evaluation o,

» Baseline metrics will be incorporated into the PCMDI Metrics
Package (PMP) and run on simulations in the CMIP archive, as
well as a suite of observational datasets (likely FROGS, Roca
et al., 2019)

 An initial study and report will use the baseline metrics to
evaluate CMIP6 DECK and Historical simulations

* And also compare them against previous generations (CMIP3 and 5)
to evaluate change over time

Precipitation Metrics Workshop Department of Energy * Office of Science ¢ Biological and Environmental Research



Future studies to address biases in CMIP models

* Working with observations

* Understanding differences among observational datasets for moments
beyond mean precipitation — its intensity distribution, and variability across
timescales

* Developing a gridded observational dataset focused on the higher moments
* Quantifying uncertainty

* Intriguing process-oriented model development approach:
Stochastic parameterization

* Focused effort on improving precipitation for the next generation of
climate models, using the precipitation benchmarking as a guide




Stochastic parameterizations can improve monsoon precip.
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Questions / Comments?
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Precipitation variability: Power spectral density change
from present to RCP8.5
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Precipitation variability: Power spectral density change
from present to RCP8.5
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Precipitation variability: Power spectral density
change from present to RCP8.5
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Beyond the baseline: Exploratory metrics

« Standard metrics decomposed into their components contributing to
model biases

» Metrics relating model biases to processes or phenomena to inform
model development

» Relationships that connect model biases to their regional-to-global
implications

* Emergent relationships that connect model biases to model responses
to perturbations

L se-inspire '~',etric§ connected with impacts
/ (L (| L A
i i n

Precipitation Metrics Workshop Department of Energy * Office of Science ¢ Biological and Environmental Researgig



Exploratory metrics: Hierarchy

Space and time Phenomena and impacts

scales

Mean state

Seasonal cycle Monsoon regional features (e.g., monsoon
depression, Meiyu rainfall jump), precipitation
in Mediterranean climate

Synoptic Frontal, extratropical cyclones, atmospheric
rivers

Sub-daily Orographic precipitation, mesoscale
convective systems

PDF Intensity-duration-frequency curve

Extremes Tropical cyclones, severe convective storms,

) A i compound extremes, composites of top 10

events

Tropical variability

Mid-to-high latitude
variability

e events:|

Relationships and
processes

Relationships between variables such
as:

- P-moisture

- P-T

P-omega

P-MSE

P-entrainment/trigger

Teleconnection relationships such as:

- Influence of ENSO-PNA on P

- MJO-TC connection and impacts
on P

- MJO-AR connection and impacts
on P

Emergent relationships to constrain
projected changes in P

Precipitation Metrics Workshop Department of Energy ¢ Office of Science ¢ Biological and Environmental Research
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