

Rainfall characteristics in CMIP models

Angeline Pendergrass National Center for Atmospheric Research

NCAR is sponsored by National Science Foundation

Why improve precipitation in climate models?

- To accurately simulate atmospheric circulation and coupled climate system interactions affected by fluxes of water and energy, which affect the ocean, land surface, biosphere, and cryosphere
- Precipitation is a primary manifestation of climate influencing the natural and human-managed environment, and people, and so it should be a key variable in climate models
- Many impacts of climate change are driven by precipitation, and users are increasingly trying to extract information about future precipitation from climate model projections – often indirectly (via downscaling, bias correction, ...)

NCAR is sponsored by National Science Foundation

Why impove precipitation in climate models?

- To accurately simulate atmospheric circulation and coupled climate system interactions affected by fluxes of water and energy, which affect the ocean, land surface, biosphere, and cryosphere
- Precipitation is a primary manifestation of climate influencing the natural and human-managed environment, and people, and so it should be a key variable in climate models
- Many impacts of climate change are driven by precipitation, and users are increasingly trying to extract information about future precipitation from climate model projections – often indirectly (via downscaling, bias correction, ...)
- Nonetheless, we often hear that precipitation isn't that good in climate models

NCAR is sponsored by National Science Foundation

Outline

- Precipitation in CMIP5 models
 - The distribution of precipitation
 - Re-corfirming light rain bias
 - Unevenness of contributions from heavy precipitation
- Evaluating precipitation in CMIP models (ongoing work)
- Thoughts about future work and efforts

NCAR is sponsored by National Science Foundation

CMIP5 daily precipitation distribution

Rain frequency 24±4 4**2** 18 Dry days 16 Frequency (%/bin) 14 12 10 8 2 0 100 0.1 10 Rain rate (mm/d)

Pendergrass and Hartmann (2014) J Clim

CMIP5 daily precipitation distribution

Pendergrass and Hartmann (2014) J Clim

Observed daily precipitation distribution

Pendergrass and Deser (2017) J Clim

CMIP5 rain amount distributions: Global

- Distribution calculated at each grid point, then globally averaged
- Compared against GPCP 1dd coarsened to model grid

Pendergrass and Hartmann (2014) J Clim

Observed zonal mean rain amount distribution

Pendergrass and Deser (2017) J Clim

CMIP5 rain amount distributions: Zonal mean

Zonal mean rain amount distributions

Pendergrass and Deser (2017) J Clim

Zonal mean distributions

Rain rate (mm/d)

Pendergrass and Deser (2017) J Clim

Zonal mean rain frequency distributions

Rain rate (mm/d)

Light rain bias persists in CESM1 compared to CloudSat

- CloudSat captures light rain frequency more accurately than measurements going into GPCP, TRMM, and GPM
- Satellite simulators for precipitation enable apples-to-apples comparison
- Extends work on cloud satellite simulators could be scaled across models, and to GPM

Light rain bias persists in CESM1 compared to CloudSat

- CloudSat captures light rain frequency more accurately than measurements going into GPCP, TRMM, and GPM
- Satellite simulators for precipitation enable apples-to-apples comparison
- Extends work on cloud satellite simulators could be scaled across models, and to GPM

Kay et al (2018) JGR

Unevenness of precipitation

Pendergrass and Knutti (2018) GRL

Unevenness of precipitation in observations and CMIP5 models

Models underestimate unevenness, even when resolution is accounted for

Pendergrass and Knutti (2018) GRL

SPENDI Assessing simulation of precipitation in Earth System Models

Team of experts identifies useful measures for gauging how well models simulate precipitation

Develop capability to gauge model quality Baseline metrics incorporated into a model evaluation capability and used to assess current models

Improve simulated Precipitation

Modelers provided with metrics capability to serve as a target for improving newer model versions

- Inspired by the lack of objective and systematic benchmarking of simulated precipitation
- Date/venue: July 1-2, 2019 in Rockville, MD

Renu Joseph (DOE), Angie Pendergrass (NCAR), Peter Gleckler (LLNL), Christian Jakob (Monash Uni), Ruby Leung (PNNL)

https://climatemodeling.science.energy.gov/news/doe-host-precipitation-metrics-workshop

Baseline metrics

Scope of phase 1: CMIP6 DECK + Historical simulations with standard output

- piControl
- AMIP
- 1pctCO2, abrupt4xCO2
- Historical
- <u>Data</u>: monthly, daily, and 3h mean precip, monthly prsn

Department of Energy • Office of Science • Biological and Environmental Researds

Baseline metrics: Tiers

Department of Energy • Office of Science • Biological and Environmental Research

Baseline metrics: CMIP6 evaluation

- Baseline metrics will be incorporated into the PCMDI Metrics Package (PMP) and run on simulations in the CMIP archive, as well as a suite of observational datasets (likely FROGS, Roca et al., 2019)
- An initial study and report will use the baseline metrics to evaluate CMIP6 DECK and Historical simulations
 - And also compare them against previous generations (CMIP3 and 5) to evaluate change over time
- Simultaneously, an effort on Exploratory Metrics is including more process-oriented diagnostics

Future studies to address biases in CMIP models

- Working with observations
 - Understanding differences among observational datasets for moments beyond mean precipitation – its intensity distribution, and variability across timescales
 - Developing a gridded observational dataset focused on the higher moments
 - Quantifying uncertainty
- Intriguing process-oriented model development approach: Stochastic parameterization
- Focused effort on improving precipitation for the next generation of climate models, using the precipitation benchmarking as a guide

NCAR is sponsored by National Science Foundation

Stochastic parameterizations can improve monsoon precip.

Questions / Comments?

apgrass@ucar.edu

NCAR is sponsored by National Science Foundation

Precipitation variability: Power spectral density change from present to RCP8.5

Period (days)

Precipitation variability: Power spectral density change from present to RCP8.5

Precipitation variability: Power spectral density change from present to RCP8.5

Pendergrass et al (2017) Scientific Reports

Beyond the baseline: Exploratory metrics

- Standard metrics decomposed into their components contributing to model biases
- Metrics relating model biases to processes or phenomena to inform model development
- Relationships that connect model biases to their regional-to-global implications
- Emergent relationships that connect model biases to model responses to perturbations
- Use-inspired metrics connected with impacts

Exploratory metrics: Hierarchy

Space and time scales	Phenomena and impacts	Relationships and processes
Mean state		Relationships between variables such as: - P-moisture - P-T - P-omega - P-MSE - P-entrainment/trigger
Seasonal cycle	Monsoon regional features (e.g., monsoon depression, Meiyu rainfall jump), precipitation in Mediterranean climate	
Synoptic	Frontal, extratropical cyclones, atmospheric rivers	
Sub-daily	Orographic precipitation, mesoscale convective systems	 Teleconnection relationships such as: Influence of ENSO-PNA on P MJO-TC connection and impacts on P MJO-AR connection and impacts on P Emergent relationships to constrain projected changes in P
PDF	Intensity-duration-frequency curve	
Extremes	Tropical cyclones, severe convective storms, compound extremes, composites of top 10	
	events	
Tropical variability		
Mid-to-high latitude variability		

CMIP5 rain frequency distributions: Zonal mean

