
Mike Pritchard
Associate Professor

University of California, Irvine

T H E  C L O U D  B R A I N  V 2
Achieving conservation and probing interpretability 

using a refined deep learning emulator of global 
cloud superparameterization



I. Emulating classical superparameterization on a simple aquaplanet.

II. New tests towards adding land and real geography.

Summary of results, challenges & surprises from Rasp, Pritchard & Gentine (2018).

Successful one-way land coupling, fit quality w/ geography  & seasons, new challenges.

III. Respecting physics, probing interpretability.
Achieving energy conservation, summarizing convective dynamics.

Road Map



How will low cloud 
organization interact 

with climate 
dynamics?

Shallow cloud 
organization is ubiquitous 

in observations

The relevant turbulent 
processes can be simulated 

in LES...

...which suggest future changes in 
cloud organization may impact TOA 

radiation

Unless buffered, this will demand ITCZ 
shifts & ocean circulation changes.

At high CO2, more efficient plant 
water use changes surface 

energy partitioning

Parameterized turbulence responds 
by lofting more vapor to altitudes 

where it can be flushed by Andean 
mountain jets

Thus starving the Amazon of 
rainfall through column energetics

Turbulence 
matters

Why does vegetation 
dry itself out over the 

Amazon?

M O T I VAT I O N



M O T I VAT I O N

To planetary 
climate dynamics

To the regional 
water cycle

Turbulence 
matters



W H E R E  W E  
Unsatisfying 

approximations of 
turbulence in global 

climate models seem 
inescapable.



Deep Learning emulation might allow high definition 
3D turbulence ahead of schedule!

If the job is hard, e.g. 
simulating the whole 

atmosphere for 
decades...

...satisfying 3D turbulence 
calculations can seem too 
much even for powerful 

computers.



If the job changes to 
making  short 

simulations just for 
training machine 

learning emulators...

...we can do much more justice to turbulence 
physics.

Deep Learning emulation might allow high definition 
3D turbulence ahead of schedule!
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Cloud SuperParameterization (SP)

Strategically undersampling horizontal space to 
explicitly represent important sub-grid processes.



In the past decade the 1-4 km resolution regime was 
a frontier that SuperParameterization helped explore.

Now Global Cloud Resolving Models handle this more elegantly.



This decade, superparameterization could help 
penetrate the turbulence-permitting frontier.

“Cori” at NERSC in Berkeley - 30 petaflops 
~ 2,000 Intel Haswell nodes


(~ 75,000 2.3 GHz cores)

But it takes a heck of a lot of computing power.



Training NNs on SP data is easier than coarse-
graining.

Pro: Like nature, no artificial scale 
separation in the data.

Con: Coarse-graining draws on after the 
fact. No clean info on what’s needed to 
correct  a coarse-res model.

Pro: Convenient scale separation in the 
training data, well suited to correcting 
exterior model.

Con: That scale separation is 
utterly artificial & interferes with 
modes of variability.



Schematic of the sort of NN we will use.

T profile 
(30 values)
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Sensible heat flux
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Schematic of the sort of NN we will use.

T profile 
(30 values)

q profile 
(30 values)

Sensible heat flux
Latent heat flux

Surface pressure

128 node hidden layers

Convective + 
radiative heating


rate profile

(30 values)

Convective 
moistening rate 

profile

(30 values)

Precipitation rate
TOA radiative flux
Sfc radiative flux

Incoming sunlight

Inputs (large scale) Outputs (SGS tendency)



Is deep learning viable for emulating 
superparameterization?

1 year for training 1 year for validation

Zonally symmetric aquaplanet testbed
with classical superparameterization

Time-step level output
(incl. what is needed to close budgets)



Global aquaplanet testbed

Can 140,000,000 outputs from 1 
year of ~ 10,000 cloud-resolving 

models...

Be fit by a deep neural network?

Gentine, Pritchard, Rasp et al., GRL, 2019.

Is deep learning viable for emulating 
superparameterization?



Yes, e.g. R2 > 0.7 for mid-
tropospheric 

heating by convection and 
radiation.

Quite possibly!

The “Cloud Brain”

Global aquaplanet testbed

Can 140,000,000 outputs from 1 
year of ~ 10,000 cloud-resolving 

models...

Be fit by a deep neural network?

Is deep learning viable for emulating 
superparameterization?



Prognostic tests: Neural Network producing same 
mean climate 20x faster.

Rasp, Pritchard and Gentine, PNAS, 2018.

Rasp, Pritchard & Gentine, PNAS, 2018.

Zonal mean diabatic 
heating rate



High enough accuracy to correct convective biases 
in CAM at low computational cost ( < 10% )

Rasp, Pritchard and Gentine, PNAS, 2018.



Spooky out-of-sample generalizability was found in the NN: Response 
to +3K warm pool perturbation of zonally symmetric aquaplanet

...anchors a Walker cell as 
expected.

Adding zonally asymmetric 
SSTs

to the SP benchmark 
solution...

Same response in the Neural-
Network GCM

despite no Walker Cell in its training 
data...

...and despite these SSTs exceeding 
maximum

values in the training data set by +3K.

Rasp, Pritchard and Gentine, PNAS, 2018.



Quandary:  generalizability has limits that are totally 
empirical

SP-CAM

NN-CAM

equatorial 

contraction

poleward,

upward

ITCZ shift 
failure mode

double ITCZ 
failure mode

Response to +1K to +4K surface warming

Benchmark:

NN prediction:

Rasp, Pritchard and Gentine, PNAS, 2018.



Quandary:  instabilities abound and stable runs are rare.

Figure courtesy of Tom Beucler.

Example of the neural network blowing up in prognostic mode.
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Galen Yacalis, UCI MS thesis, Aug. 2018.

Successful one-way coupling to land model despite fit 
imperfections.

Same nonlinear land model drift structure & unsteady carbon cycle adjustments as benchmark.

5-year CLM4 integrations for fictitious Amazon forest tiles exposed to surface inputs from NNCAM, across 112 points within 15S-15N.



Relaxing the aquaplanet idealizations

Model version: SPCAM3.0

Dynamical core: Spectral + semi-Lagrangian

Physics columns: ~8k

No geography or land

Perpetual equinox

Weak oceanic diurnal cycles

Zonal symmetry

SPCAM5

Finite-volume, 2-deg

~14k

Real geography & land

Full seasonality

Realistic diurnal cycles

Walker cells, asymmetric storm tracks, etc.



Successful composite diurnal rainfall cycle in new DNN fit.
Neural network predictions:Benchmark solution:



But also many unrealistically “detectable” diurnal signals.
Neural network predictions:Benchmark solution:

A new rainfall emulation challenge over subtropical arid land regions



For high frequency details, it is harder to fit w. geography & 
seasons.

Aquaplanet benchmark 
Rasp, Pritchard & Gentine (2018)

Preliminary result from real-geography 
Mooers, Pritchard et al. (in prep)

Zonal mean convective heating rate assessed via misfit of timestep-level (15-min) prediction quality

R2 R2



But encouraging results for longer than diurnal timescales 
so far.

Figure courtesy of Griffin Mooers 
First-year UCI PhD student.

Tropical band: Daily mean skill, convective heating rate: 15S-15N.

Sum of squared error: Sum of squared variance: R2
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SPCAM NNCAM

The neural network begins to learn on its own to quasi-conserve 
column moist static energy without direction, but with error.

Rasp, Pritchard and Gentine, PNAS, 2018.



Quandary: data-driven NN parameterizations don’t 
strictly obey conservation laws.

Figure courtesy of Tom Beucler, UCI Postdoc.1



Four constraints:
Conservation of column energy & mass

Consistency of longwave & shortwave radiative heating

Tom Beucler’s idea: 
Write physical 
constraints as function 
of input (x) and output 
(y).

How to physically constrain neural network 
parameterizations?

Tom Beucler
Postdoc



Option #1: 
Through the loss function:

Slide courtesy of Tom Beucler, UCI postdoc.

How to physically constrain neural network 
parameterizations?



Option #2: 
Through the architecture:

Tom Beucler’s idea: 
Enforce n constraints 
within
the neural net 
architecture.



Tom’s new architecture-constrained version of our neural 
network obeys physical constraints close to numerical precision.

Residuals now 
10-9 W/m2

Beucler, T., S. Rasp, M. Pritchard & P. Gentine, 2019: Achieving Conservation of 
Energy in Neural Network Emulators for Climate Modeling. ICML, Climate Change+AI.



Interpreting the black-box: 
Neural network assisted dynamical analysis.

Figure courtesy of Tom Beucler, UCI postdoc.

“Dynamical response matrices” like this that summarize moist 
convection have been made before but just for idealized tropical 

basic states
They are usually hard-won.

Jacobian of the neural network 
fit to a superparameterized 
aquaworld.

(nondimensional convective growth 
rate in response to input T, q 
perturbations)



First glimpse of the basic state dependence of 
Kuang’s linear convective response matrix.

Diagnostics like this 
come along with 
neural network training 
“for free”

Animation courtesy of Tom Beucler, UCI postdoc.

Deriving this with standard 
methods would be 
inconceivably labor-
intensive.



Philosophical remarks & outlook.



Cheap 
skill

Experimental process knobs?

Tunability?

Interpretable parameter groups?

Quandary: Even if it can be made stable and robust, 
what is sacrificed in relinquishing physics to a black-box?



A case for the black box

Might DOF of system be too big for human brain to 
encapsulate in aesthetic, interpretable cartoons & 

parameters?

Schematic courtesy of Chris Bretherton, UW.



A case for millions of parameters

Chollet, Fig. 2.9

Chollet’s “geometric interpretation of deep learning”

Deep NNs do this by “incrementally decomposing a complicated geometric transformation into a long chain of elementary ones”



Deep learning has
breakthrough 

potential.

Even short superparameterized 
simulations can be mined for their 

essence.

Already a surprisingly good 
emulator of deep moist 

turbulence.

What else might be 
satisfyingly 

“emulatable”?

In-cloud chemistry
coupled to dynamics?

Species-level 
ecosystem dynamics?

To create efficient emulators 
with same emergent benefits.

Spectral bin
microphysics?

Better discretizations
for PDE solvers?

But issues of instability are 
yet to be resolved!

For compactly interpreting & intercomparing highly
complex dynamical systems.

Our community has
only scratched the surface.

W H E R E  C A N  W E  G O  F R O M  



T H A N K S

It is an exciting time for numerical climate 
dynamics!

mspritch@uci.edu

mailto:mspritch@uci.edu
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Crystal Cove State Park 
(10 min drive)

N E W  G R O U P  M E M B E R S  



Laguna Beach  
(20 min drive)

N E W  G R O U P  M E M B E R S  



C O N T R A S T S  T O  I M A G E  



C O N T R A S T S  T O  I M A G E  

In what ways is the cloud parameterization emulation problem different?


V S

What is interesting in the comparison?



D I M E N S I O N A L I T Y  &  D ATA  

Moderate data amount

e.g. 10,000 labeled 
images

Massive data amount

V S

100,000,000 
synthetic training 

samples



D I M E N S I O N A L I T Y  &  D ATA  

Moderate data amount

e.g. 10,000 labeled 
images

Massive data amount

V S

100,000,000 
synthetic training 

samples

100 x 100 pixels x 3 
colors = 30,000 
incoming values. 

high dimensional  
input per sample low dimensional  

input…

3 state vars x 30 levels 
~ 100 incoming values 

(300x less)



Image processing is at totally different limits.

Computer scientists have no 
reason to know yet what is 

possible at ours!



C O N V N E T S  &  I M A G E  



V I S U A L I Z I N G  W H AT  C O N V N E T S  

Once trained, hit the NN with a test image. 
See what lights up.



V I S U A L I Z I N G  W H AT  C O N V N E T S  

“Fourth channel of the activation of the 1st 
layer on the test cat picture” “Seventh channel of the 1st layer”



F R O M  S M A L L  B U I L D I N G  



T O  A B S T R A C T  



(My favorite)



C O N V N E T  D AY D R E A M I N G
Sheer size of images demands 

some type of dimensionality 
reduction 

ConvNets accomplish this yielding heirarchies of
increasingly abstract “representations” of “catness" 

learnt from big labeled imaged libraries.

Simple way to see what “features" 
of an image the NN exploits to 

achieve its skill.

Natural to wonder if there is an 
analogy to our question of 

interest..

What “features" of "environmental 
thermodynamics” give our NN emulator of 

SP its skill in predicting “convective 
adjustments”?



I F  T H I S  S O U N D S  F U N  T O  Y O U . .
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