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Time-of-Emergence Calculations

°C yr -1

Signal = mean of 30 linear trends over given time period 
Noise = standard deviation of 30 trends ( ~normally distributed) 

SNR = Signal/Noise 
Time-of-Emergence for anthropogenic trend is first year when SNR > 2. [95% Confidence]

global annual ∆SST 

°C

5 Year Trends 
signal = 0.23 °C yr -1 
noise  = 0.28 °C yr -1 
SNR = 0.80 

30 ensemble members

5



Time-of-Emergence Calculations

°C yr -1

global annual ∆SST 

°C

5 Year Trends 
signal = 0.23 °C yr -1 
noise  = 0.28 °C yr -1 
SNR = 0.80 

30 ensemble members

Signal = mean of 30 linear trends over given time period 
Noise = standard deviation of 30 trends ( ~normally distributed) 

SNR = Signal/Noise 
Time-of-Emergence for anthropogenic trend is first year when SNR > 2. [95% Confidence]

5



N
or

m
al

ize
d 

C
ou

nt
 

5 Year Trends 
signal = 0.023 °C yr -1 
noise  = 0.028 °C yr -1 
SNR = 0.80 

5 years

global annual ∆SST 

Time-of-Emergence Calculations
Signal = mean of 30 linear trends over given time period 

Noise = standard deviation of 30 trends ( ~normally distributed) 
SNR = Signal/Noise 

Time-of-Emergence for anthropogenic trend is first year when SNR > 2. [95% Confidence]

5



N
or

m
al

ize
d 

C
ou

nt
 

5 Year Trends 
signal = 0.023 °C yr -1 
noise  = 0.028 °C yr -1 
SNR = 0.80 

5 years

global annual ∆SST 

Time-of-Emergence Calculations
Signal = mean of 30 linear trends over given time period 

Noise = standard deviation of 30 trends ( ~normally distributed) 
SNR = Signal/Noise 

Time-of-Emergence for anthropogenic trend is first year when SNR > 2. [95% Confidence]

5



°C yr -1

global annual ∆SST 

10 years

Trends: 5-yr 10-yr 
signal = 0.016°C yr -1 
noise  = 0.012 °C yr -1 
SNR = 1.28 

Time-of-Emergence Calculations

N
or

m
al

ize
d 

C
ou

nt
 

Signal = mean of 30 linear trends over given time period 
Noise = standard deviation of 30 trends ( ~normally distributed) 

SNR = Signal/Noise 
Time-of-Emergence for anthropogenic trend is first year when SNR > 2. [95% Confidence]

5



°C yr -1

°C

Trends: 5-yr 10-yr 15-yr 
signal = 0.013 °C yr -1 
noise  = 0.005 °C yr -1 
SNR = 2.50 

15 years

global annual ∆SST 

Time-of-Emergence Calculations

N
or

m
al

ize
d 

C
ou

nt
 

Signal = mean of 30 linear trends over given time period 
Noise = standard deviation of 30 trends ( ~normally distributed) 

SNR = Signal/Noise 
Time-of-Emergence for anthropogenic trend is first year when SNR > 2. [95% Confidence]

5



°C

SS
T 

Tr
en

d 
[°C

/c
en

tu
ry

]

Signal and Noise of SST Trends

2xNoise

Noise

Signal

Length of Trend (Years)

global annual ∆SST 

Time-of-Emergence Calculations
Signal = mean of 30 linear trends over given time period 

Noise = standard deviation of 30 trends ( ~normally distributed) 
SNR = Signal/Noise 

Time-of-Emergence for anthropogenic trend is first year when SNR > 2. [95% Confidence]

5



GLOBAL  

Time-of-Emergence Calculations
Signal = mean of 30 linear trends over given time period 

Noise = standard deviation of 30 trends ( ~normally distributed) 
SNR = Signal/Noise 

Time-of-Emergence for anthropogenic trend is first year when SNR > 2. [95% Confidence]

5



GLOBAL  REGIONAL  

Time-of-Emergence Calculations
Signal = mean of 30 linear trends over given time period 

Noise = standard deviation of 30 trends ( ~normally distributed) 
SNR = Signal/Noise 

Time-of-Emergence for anthropogenic trend is first year when SNR > 2. [95% Confidence]

5



GLOBAL  REGIONAL  LOCAL / 
GRID-CELL  

Time-of-Emergence Calculations
Signal = mean of 30 linear trends over given time period 

Noise = standard deviation of 30 trends ( ~normally distributed) 
SNR = Signal/Noise 

Time-of-Emergence for anthropogenic trend is first year when SNR > 2. [95% Confidence]

5



a.GFDL b.CESM c.CanESM d.MPI

∆S
ST

 [°
C]

 RCP8.5

RCP4.5

Year Year Year Year

Large Ensemble Experiments from 4 Earth System Models
using business as usual (RCP8.5) 

and moderate mitigation (RCP4.5) scenarios 

6



a.GFDL b.CESM c.CanESM d.MPI

∆S
ST

 [°
C]

 RCP8.5

RCP4.5

Year Year Year Year

Large Ensemble Experiments from 4 Earth System Models
using business as usual (RCP8.5) 

and moderate mitigation (RCP4.5) scenarios 

can test the model- and scenario-sensitivity of emergence times

6



Large Ensemble Experiments from 4 Earth System Models
Changes in key ocean observables over the 21st century
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For some regions, mitigation can delay or deter emergence  
                     of biological impacts  and second order physical changes, like changes in SSS.
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b. Air-Sea CO2 Flux d. Chlorophylla.SST c. Soft-tissue Pump e. SSS
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b. Air-Sea CO2 Flux d. Chlorophylla.SST c. Soft-tissue Pump e. SSS

Time of  Emergence 

Time of Emergence for Local Trends
Mean of the 4 LEs, white hatching over areas of model-disagreement 

LEs agree on early emergence of SST over tropics and extra-tropics

Long but inconsistent ToEs for soft-tissue pump, chlorophyll and SSS

LEs agree on non-emergence CO2 fluxes over subtropics 
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Results

Time of Emergence     Partitioning Uncertainty 

LE’s reveal internal variability can differ significantly between ESMs,  
but structural uncertainty generally dominate

ToE’s in the ocean ranging from under a decade to over a century

Consistent chronology amongst representative suite of ESMs
Time-lag of drivers: rapid interaction with atm CO2 & heat, slow circulation adjust 

Take  
  Aways

>> GFDL LE output available @ http://poseidon.princeton.edu
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Partitioning Projection Uncertainty in 4 ESM LEs
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Sequence of Emerging Anthropogenic Signals in the Ocean
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Pumps (in bold) and ocean tracers and process to which the pumps are coupled
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