Time of Emergence Large Ensemble Intercomparison for Ocean Biogeochemistry "ToE-LE-MIP"

& Keith B. Rodgers, Jorge L. Sarmiento, Tatiana Ilyina John Dunne, Yohei Takano, James Christian, Mathew Long **Thomas L. Frölicher, Richard Slater, Flavio Lehner**

> Large Ensemble Workshop | NCAR July 26th, 2019

Sarah Schlunegger

Ocean Carbon Cycle 101 **Time-of-Emergence Diagnostic** Results

Time of Emergence

1990 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Outline

Partitioning Uncertainty

Contemporary ocean carbon and heat sink

З

Contemporary ocean carbon and heat sink

З

Schematic of ocean carbon cycle Pumps transport carbon to deep ocean

Schematic of ocean carbon cycle Pumps transport carbon to deep ocean

1. solubility pump 2. biological pumps

warm surface ocean accumulation of carbon deep ocean _ Low & Mid Latitudes

High Latitudes

Schematic of ocean carbon cycle Pumps transport carbon to deep ocean

- point in time the climate-change signal is statistically distinguishable from the noise a multi-purpose metric

point in time the climate-change signal is statistically distinguishable from the noise a multi-purpose metric

point in time the climate-change signal is statistically distinguishable from the noise a multi-purpose metric

point in time the climate-change signal is statistically distinguishable from the noise a multi-purpose metric

Figure from Schlunegger et al., 2019, in press

point in time the climate-change signal is statistically distinguishable from the noise a multi-purpose metric

Figure from Schlunegger et al., 2019, in press

point in time the climate-change signal is statistically distinguishable from the noise a multi-purpose metric

Figure from Schlunegger et al., 2019, in press

point in time the climate-change signal is statistically distinguishable from the noise a multi-purpose metric

Figure from Schlunegger et al., 2019, in press

point in time the climate-change signal is statistically distinguishable from the noise a multi-purpose metric

(1) inform observing(1) system design

(2) timescales

time at which trend exceeds the natural variability a system or organism is designed for or accustomed or adapted to diagnostic which intelligently normalize anthropogenic respo across disparate varia

point in time the climate-change signal is statistically distinguishable from the noise a multi-purpose metric

point in time the climate-change signal is statistically distinguishable from the noise a multi-purpose metric

(1) inform observing(1) system design

(2) timescales

(3)

diagnostic which intelligently normalize anthropogenic responses across disparate variables

- **Signal** = mean of 30 linear trends over given time period
- **Noise** = standard deviation of 30 trends (~*normally distributed*)
 - **SNR** = Signal/Noise
- **Time-of-Emergence** for anthropogenic trend is first year when **SNR > 2**. [95% Confidence]

- **Signal** = mean of 30 linear trends over given time period
- **Noise** = standard deviation of 30 trends (~*normally distributed*)
 - **SNR** = Signal/Noise
- **Time-of-Emergence** for anthropogenic trend is first year when **SNR > 2**. [95% Confidence]

- **Signal** = mean of 30 linear trends over given time period
- **Noise** = standard deviation of 30 trends (~*normally distributed*)
 - **SNR** = Signal/Noise
- **Time-of-Emergence** for anthropogenic trend is first year when **SNR > 2**. [95% Confidence]

Signal = mean of 30 linear trends over given time period **Noise** = standard deviation of 30 trends (~*normally distributed*) **SNR** = Signal/Noise

- **Time-of-Emergence** for anthropogenic trend is first year when **SNR > 2**. [95% Confidence]

Signal = mean of 30 linear trends over given time period **Noise** = standard deviation of 30 trends (~*normally distributed*) **SNR** = Signal/Noise

- **Time-of-Emergence** for anthropogenic trend is first year when **SNR > 2**. [95% Confidence]

Signal = mean of 30 linear trends over given time period **Noise** = standard deviation of 30 trends (~*normally distributed*)

- **SNR** = Signal/Noise
- **Time-of-Emergence** for anthropogenic trend is first year when **SNR > 2**. [95% Confidence]

Signal = mean of 30 linear trends over given time period **Noise** = standard deviation of 30 trends (~*normally distributed*) **SNR** = Signal/Noise

- **Time-of-Emergence** for anthropogenic trend is first year when **SNR > 2**. [95% Confidence]

GLOBAL

- **Signal** = mean of 30 linear trends over given time period
- **Noise** = standard deviation of 30 trends (~*normally distributed*)
 - **SNR** = Signal/Noise
- **Time-of-Emergence** for anthropogenic trend is first year when **SNR > 2**. [95% Confidence]

GLOBAL

- **Signal** = mean of 30 linear trends over given time period
- **Noise** = standard deviation of 30 trends (~*normally distributed*)
 - **SNR** = Signal/Noise
- **Time-of-Emergence** for anthropogenic trend is first year when **SNR > 2**. [95% Confidence]

REGIONAL

Signal = mean of 30 linear trends over given time period

GLOBAL

- **Noise** = standard deviation of 30 trends (~*normally distributed*)
 - **SNR** = Signal/Noise
- **Time-of-Emergence** for anthropogenic trend is first year when **SNR > 2**. [95% Confidence]

REGIONAL

LOCAL / **GRID-CELL**

Large Ensemble Experiments from 4 Earth System Models using business as usual (RCP8.5) and moderate mitigation (RCP4.5) scenarios

Large Ensemble Experiments from 4 Earth System Models using business as usual (RCP8.5) and moderate mitigation (RCP4.5) scenarios

can test the model- and scenario-sensitivity of emergence times

Large Ensemble Experiments from 4 Earth System Models Changes in key ocean observables over the 21st century GFDL-ESM2M CESM1 CanESM2 MPI ESM LR

3-5°C Warming by 2100

Large Ensemble Experiments from 4 Earth System Models Changes in key ocean observables over the 21st century GFDL-ESM2M CESM1 CanESM2 MPI ESM LR

Inverse relationship between ΔT and CO_2 uptake

Large Ensemble Experiments from 4 Earth System Models Changes in key ocean observables over the 21st century GFDL-ESM2M CESM1 CanESM2 MPI ESM LR

Large Ensemble Experiments from 4 Earth System Models Changes in key ocean observables over the 21st century CESM1 CanESM2 MPI ESM LR **GFDL-ESM2M**

d. Surface c. Soft Tissue e. Sea Surface Chlorophyll Pump **က္** 0.1 E Δmg 0 -0.1 2000 2025 2050 2075 2100 2000 2025 2050 2075 2100 Year Year

All models reduced bio export, magnitude uncertain

Neutral or declining chlorophyll

Large Ensemble Experiments from 4 Earth System Models Changes in key ocean observables over the 21st century CESM1 CanESM2 MPI ESM LR **GFDL-ESM2M**

LEs agree global SST and Air-Sea CO_2 flux emergent within <2 decades Longer ToEs and less LE-agreement for the biological variables and SSS

For some regions, mitigation can delay or deter emergence of biological impacts and second order physical changes, like changes in SSS.

Time of Emergence for Local Trends Mean of the 4 LEs, white hatching over areas of model-disagreement

Time of Emergence 2000 2010 2020 2030 2040 2050 2060 2070 2080 2090 2100

Time of Emergence for Local Trends Mean of the 4 LEs, white hatching over areas of model-disagreement

- LEs agree on early emergence of SST over tropics and extra-tropics
- LEs agree on non-emergence CO₂ fluxes over subtropics
- Long but inconsistent ToEs for soft-tissue pump, chlorophyll and SSS

Partitioning Uncertainty (e.g. Hawkins and Sutton) using multiple Large Ensembles

GLOBAL DOMAIN

Partitioning Uncertainty (e.g. Hawkins and Sutton) using multiple Large Ensembles

GLOBAL DOMAIN

Model uncertainty important for all variables

Internal variability estimates can differ significantly between the ESMs

Partitioning Uncertainty (e.g. Hawkins and Sutton) using multiple Large Ensembles

GLOBAL DOMAIN

Partitioning Uncertainty (e.g. Hawkins and Sutton) using multiple Large Ensembles **AT YEAR 2050** a.Global Senario d.Equatorial Pacific e.North c.North Atlantic b.Arctic Pacific -thai soft Pump CO2551 g.Southern Ocean h.South Pacific j.South Indian i.North Indian GFDL-ESM2M CESM1 **MPI-ESM** CanESM2 Model

Partitioning Uncertainty (e.g. Hawkins and Sutton) using multiple Large Ensembles **AT YEAR 2050** a.Global Senario d.Equatorial Pacific e.North c.North Atlantic **b.Arctic** Pacific 55 Soft Pump CO2' h.South Pacific g.Southern Ocean j.South Indian i.North **GFDL-**Indian ESM2M CESM1 **MPI-ESM** CanESM2 Model

Internal variability estimates important at regional scales, and can differ significantly between ESMs, for bio-parameters and SSS

Results

but structural uncertainty generally dominate

Take Aways

Partitioning Uncertainty

- ToE's in the ocean ranging from under a decade to over a century
- Time-lag of drivers: rapid interaction with atm CO_2 & heat, slow circulation adjust
- Consistent chronology amongst representative suite of ESMs
- LE's reveal internal variability can differ significantly between ESMs,
- >> GFDL LE output available @ http://poseidon.princeton.edu

Partitioning Projection Uncertainty in 4 ESM LEs

 $U_M(t) = Max\{\overline{LE}_{m,85}(t, m = 1:4)\} - Min\{\overline{LE}_{m,85}(t, m = 1:4)\}$ (1)

will the moderate or declining forcing scenario.

We estimate Us by averaging across both ensemble members and ESMs,

$$U_S(t) = Mean\{\bar{LE}_{85}(t, m = 1:4)\} - Mean\{\bar{LE}_{45}(t, m = 1:4)\}$$
(2)

where t is the years between 2006 and 2100 and m denotes the 4 ESMs.

$$U_{IV}(m,t) = Max\{LE_{m,85}(t,e=1:30)\} - Min\{LE_{m,85}(t,e=1:30)\}$$
(3)

where t is the years between 1990 and 2100, m denotes the 4 ESMs, and e denotes the ensemble members in each LE. We use the RCP8.5 LEs as this is the scenario with the most ensemble members available for each of the LEs.

Where t is the years between 1990 and 2100 and m denotes the 4 ESMs. We use the RCP8.5 LEs for two reasons: (1) this is the scenario with the most ensemble members available, at least 30 members for each ESM and (2) the larger forcing that persists through the century will reveal model differences more effectively than

Sequence of Emerging Anthropogenic Signals in the Ocean

Reduced Emergence timescales with optimized sampling strategies

seasonally resolved ΔpCO₂

vertically integrated chlorophyll (0-500m)

surface $pH \& pCO_2$ surface $\hat{\Omega}_{arag}$ surface nALK CaCO₃ pump SST ΔpCO_2 invasion flux heat O_{2,SAT} ∫chlorophyll surface phytoplankton Soft tissue pump surface chlorophyll NO_3 AOU ∫O₂ ∫NPP MLD

Sequence of Emerging Anthropogenic Signals in the Ocean

Pumps (in bold) and ocean tracers and process to which the pumps are coupled

Figure 3.2: Global and regional year of emergence

	Global	Arctic		Pacific		A	Atlantic		Indian		Southern 50%	
		Nof65N	18N-65N	18S-18N	44S-18S	18N-65N	18S-18N	44S-18S	Nof0N	44S-0N	Sof45S	emerged
<i>p</i> H & <i>p</i> CO ₂	4	5	5	6	5	5	7	6	6	6	3	8
1 1 Ω	3	3	3	12	3	3	4	5	4	3	5	16
nALK	5	7	11	12	7	9	14	10	16	8	11	22
CaCO ₃ export	10	14	11	18	14	13	15	12	16	18	9	30
SST	11	12	15	16	12	23	14	13	12	11	111+	33
$\Delta p CO_2$	17	26	29	23	26	16	29	20	23	24	16	38
Air-Sea O_2^{T} flux	14	19	26	24	19	13	23	18	21	18	17	38
JHeat	4	25	18	26	25	19	18	13	25	14	31	50
$\int O_{2,SAT}$	14	60	33	35	60	33	21	17	50	18	28	63
[chlorophyll	17	52	22	31	52	41	26	84	26	36	31	72
phyto biomass	18	47	41	30	47	28	26	65	33	50	57	75
¹ POC export	23	51	40	34	51	33	27	85	32	50	39	78
surf. chlorophyll	25	84	47	52	84	44	30	75	53	68	34	82
NÓ3	24	111+	60	32	111+	20	32	36	53	50	76	84
∫AQU	111+	102	25	80	102	82	53	51	111+	111+	31	86
$\int O_2$	17	111+	20	111+	111+	79	55	41	106	101	27	90
∫NPP	36	111+	53	76	111+	103	50	45	81	111+	111+	94
MLD	38	64	22	111+	64	27	65	39	41	65	84	97
mean of all variables	22	51	27	41	51	33	29	36	40	43	41	

Global and regional year of emergence (after 1990) for globally- and regionally-integrated anthropogenic signals and 50% of local anthropogenic signals for the given biogeochemical variables. For each domain a single domain-averaged or domain-integrated timeseries for each variable is used to compute ToE. Color of each cell corresponds to the emergence year. Dashed boxes around the 3 ocean carbon pumps. Variables same as defined in caption of Figure 3.1

1990 2010 2030 2050 2070 2090 >2100

Time of Emergence for (5a.) annual (5c.) local summer and (5e.) local winter trends in seaair ΔpCO_2 and the corresponding trend (signals) in same order (5b, d, f). July-September and January-March define summer and winter. Signals are the linear trend between 1990 and the ToE for each grid-cell. Panel 5g. shows the ensemble mean seasonal cycle of ΔpCO_2 at 3 locations along 160W (marked in 4f.) for year 1990 (solid) and year 2100 (dashed). The amplification of the seasonal pCO_2 cycle is shown on the maps and on the diagram of the season cycle at the 3 locations.

Figure 3.4: Seasonality of ΔpCO_2 ToE and Signals

Figure 3.5: ToE and Signal Maps for surface vs. depth-integrated chlorophyll

ToE (a-b) and Signal Maps (d-e) for surface vs. depth-integrated chlorophyll. Surface trends are two orders of magnitude greater than depth integrated (0-500m) trends, however emergence of integrated chlorophyll is generally earlier due to the noise reduction that occurs with depth integration. The maximum on the color scale for chlorophyll inventory signal is $[4x10^{-5} \text{ mmol m}^{-3} \text{ yr}^{-1}]$ and for surface chlorophyll is $[2.3 \times 10^{-3} \text{ mmol}^{-3} \text{ yr}^{-1}]$. $[NO_3] = 0.5 \ \mu \text{mol} \text{ kg}^{-1}$ contours imposed on panel d.

Figure A.1: Changes in ocean carbon pumps for the LE and sensitivity experiments

Panel a. shows the physical plump (air-sea CO_2 fluxes) and panel b the biological pumps, where POC is particulate organic carbon. Values from the sensitivity experiments are shown in different colors. All forcings indicates a fully coupled, transient run in which the forcing follows a historical to RCP8.5 pathway. In 1950, ensembles 2-29 branch from ensemble member 1, with the ensemble mean shown in darker purple. The Rad-only run includes only the radiative impacts of anthropogenic forcings, and air-sea gas exchange is not affected by rising atmospheric CO_2 . The BGC-only run has only the chemical impacts of anthropogenic warming (i.e. increased CO_2 gas exchange, but no warming). PreInd indicates the pre-industrial control run. End of blue shading and dashed line at 1990 indicates the beginning of the ocean observation era, and the reference state from which emergence is defined for this paper.

Figure A.2: Change in surface ocean pCO_2 due to biological export of carbon

The export of soft tissue and calcium carbonate impacts surface ocean pCO₂ through changes in the concentration of alkalinity (ALK) and dissolved inorganic carbon (DIC). The impacts are not explicitly diagnosed in ESM2M, however we do offline calculations with CO2SYS (van Heuven et al., 2011) to estimate the impact of changing export on surface pCO₂. This is done by first computing pCO₂ using monthly output from the year 2100, then adjusting the concentration of DIC and ALK to account for changes in the pumps relative to 1990, and recalculating surface pCO₂ with the export-adjusted DIC and ALK concentrations. The difference between the pCO₂ at 2100 and the pCO₂ at 2100 if the pumps were stationary since 1990, is shown below. The annual mean is taken after the computations of pCO₂ are done monthly. For reference, the total pCO₂ changes by ~550 uatm over this same time period, due to rising atmospheric pCO₂ and a warming surface ocean.

given number of ensemble used to estimate the anthropogenic signal.

Figure A.7: Error for ToE calculation with Pre-Industrial noise.

Error for ToE calculation when using Pre-Industrial noise instead of contemporary noise derrived from the LE. (a), (b), and (c) show the maximum difference between emergence times calculated for air-sea CO₂ fluxes between using the full ensemble for both signal and noise estimates (ToE_{LE}) and using pre-industrial noise (ToE_{PI}) and 3, 10 and all 30 ensemble members to estimate the anthropogenic signal. (d) shows the fractional ocean area with a difference between ToE_{LE} and ToE_{PI} greater than 20%. Increasing the number of ensemble members reduces error, however persistent error remains ($\sim 15-30\%$ of the globe), due to the inaccuracy of pre-industrial noise. Dashed lines are the maximum error in ToE estimates, solid lines are mean (expected) error, for the

Figure 6.1: Noise and Emergence for HadiSST and the GFDL-LE

Figure 6.2: Time of Emergence using ESM Signals and HadiSST Noise

	Global	Arctic	North Pacific	WestEq Pacific	EastEq Pac	South Pacific	North Atlantic	Eq Atlantic	South Atlantic	North Indian	South Indian	Southern Ocean *
ToE _{LE} (4-model-mean)	12	39	16	14	18	15	25	15	14	13	14	23
ToE _{LE+OBS} (4-model- mean) uses HadiSST noise	26	66	26	14	34	22	28	15	17	17	14	48
difference TOE _{LE+OBS} minus TOE _{LE}	14	27	10	0	16	7	3	0	3	4	0	25

Global and regional emergence times for the mean of the 4 LEs using method presented in Chapter 2 (row 1), for the case in which HadiSST noise is used for each LE in place of model-generated noise (row 2) and the difference between the model-only vs. model-obs ToE estimates (row 3). For each LE, ToE is first computed separately before the multi-model mean is taken.

