Where Climate Data Affects Impacts Uncertainty

Scenario Uncertainty

![Graph showing CMIP5 models and RCP scenarios](Knutti et al. 2013)

Response Uncertainty

![Diagram showing processes influencing the evolution of climate feedbacks](Knutti et al. 2017)

Internal Variability

Large Ensembles,…

Projection Method Uncertainty
What We Mean By „Projections“

- Calculating future impacts of climate change requires an estimate of the future climate
- Climate models are biased; raw future data can’t be used
- Climate projections used in impacts projections combine model output with historical weather data
Our Projection Philosophy, Commonly Used in Climate Economics

„Delta Change“:

\[
\text{Future climate} = \text{current observations} + (\text{future model} - \text{current model})
\]

Assumes that the changes in the model reflect real-world changes.

Can be used for any (combination of) characteristic of the climate - different variables, different moments (mean, standard deviation, skewness, different quantiles, etc.)
Question: How do changes in climate variability affect impacts projections?

Motivation:

Economic impacts of climate change are routinely calculated under assumptions that:
Question: How do changes in climate variability affect impacts projections?

Motivation:

Economic impacts of climate change are routinely calculated under assumptions that:

1. Climate variability does not change

(i.e. Schlenker, Hanemann, and Fischer 2005; Deschênes and Greenstone 2011; Hsiang, Burke and Miguel 2013)
Question: How do changes in climate variability affect impacts projections?

Motivation:

Economic impacts of climate change are routinely calculated under assumptions that:

1. Climate variability does not change
2. Only the seasonality of climate changes

(i.e. Fischer et al. 2005; Schlenker and Roberts 2009)
Question: How do changes in climate variability affect impacts projections?

Test: Sensitivity analysis of a well-known climate damage function to fine-scaled temperature variability changes
Test: Sensitivity analysis of a well-known climate damage function to fine-scaled variability changes

Damage function: temperature vs. mortality, Deschênes and Greenstone, 2011

Base, fixed variability projection: ERA-INTERIM, scaled by CESM large ensemble yearly means (\textit{fixedvar}"

Ideal projection with fine-scaled variability changes: ERA-INTERIM, scaled by CESM large ensemble quantile changes (\textit{varchange}"

Result: omitting variability changes leads to overestimating future mortality in cold regions and underestimating it in warmer inland areas.
Test: Sensitivity analysis of a well-known climate damage function to fine-scaled variability changes

Damage function: temperature vs. mortality, Deschênes and Greenstone, 2011

Base, fixed variability projection: ERA-INTERIM, scaled by CESM large ensemble yearly means ("fixedvar")

Ideal projection with fine-scaled variability changes: ERA-INTERIM, scaled by CESM large ensemble quantile changes ("varchange")

Result: omitting variability changes leads to overestimating future mortality in cold regions and underestimating it in warmer inland areas.
Damage Function

Test: Sensitivity analysis of a well-known climate damage function to fine-scaled variability changes

Damage function: temperature vs. mortality, Deschênes and Greenstone, 2011

Base, fixed variability projection: ERA-INTERIM, scaled by CESM large ensemble yearly means ("fixedvar")

Ideal projection with fine-scaled variability changes: ERA-INTERIM, scaled by CESM large ensemble quantile changes ("varchange")

Result: omitting variability changes leads to overestimating future mortality in cold regions and underestimating it in warmer inland areas.
Test: Sensitivity analysis of a well-known climate damage function to fine-scaled variability changes

Damage function: temperature vs. mortality, Deschênes and Greenstone, 2011

Base, fixed variability projection: ERA-INTERIM, scaled by CESM large ensemble yearly means ("fixedvar")

Ideal projection with fine-scaled variability changes: ERA-INTERIM, scaled by CESM large ensemble quantile changes ("varchange")

Result: omitting variability changes leads to overestimating future mortality in cold regions and underestimating it in warmer inland areas.
„By how much will the coldest Jan 1st / median Apr 21 / hottest Aug 15 change in the future?“

- Based on the estimation of the shape of daily \(T \) distributions using quantile regression; distributional changes are imposed on historical ERA-INTERIM

- Basis functions are smooth cubic splines, allowing for
 - within year variation (seasonal cycle)
 - inter-year variation (long-term trend)
 - an interaction (long-term changes in the seasonal cycle)

- As a result, each quantile for each day-of-year (i.e. the median Jan 1st) is estimated using 40 runs x 121 years (1979-2099) = 4840 points

Variability Projection

1. Normalize

2. Estimate quantiles

3. Apply LENS change in matched quantiles

4. Un-normalize

LENs, 40 runs (projecting data)

ERA-INTERIM (reanalysis/base data)
Variability Projection

(average of [2068-2099] - average of [1979-2010] from LENS)
Variability Projection

Milwaukee County, WI

\[\Delta T \text{ (°F)} \]

Historic Mean T (°F)

January April July October

Quantile

Colorbar:

0.01 0.05 0.1 0.25 0.5 0.75 0.9 0.95 0.99
Test: Sensitivity analysis of a well-known climate damage function to fine-scaled variability changes

Damage function: temperature vs. mortality, Deschênes and Greenstone, 2011

Base, fixed variability projection: ERA-INTERIM, scaled by CESM large ensemble yearly means ("fixedvar")

Ideal projection with fine-scaled variability changes: ERA-INTERIM, scaled by CESM large ensemble quantile changes ("varchange")

Result: omitting variability changes leads to overestimating future mortality in cold regions and underestimating it in warmer inland areas.
Mortality Changes Under Variability Changes

'Varchange' projection, change historical vs. end-of-century

Difference in changes, 'varchange' - 'fixedvar' projection

Change in Annual Mortality Rate

/100,000

60

40

20

0

-20

-40

-60

Diff. in Changes in Annual Mortality Rate

/100,000

10

8

6

4

2

0

-2

-4

-6

-8

-10

Ignoring variability changes in projections overestimates future mortality

Ignoring variability changes in projections underestimates future mortality
Mortality Changes Under Variability Changes

Harris County, TX (Houston)
Mortality Changes Under Variability Changes

Harris County, TX (Houston)
Mortality Changes Under Variability Changes

1. Large ensembles allow us to extract more information from a given climate model, improving impacts projections

2. A better understanding of variability changes (estimated using large ensembles) suggests heat-related mortality changes from climate change in the US are underestimated

kschwarzwald@uchicago.edu
ks905383/quantproj