

## "Discovery" of wind response to mesoscale SSTs

a) TMI Sea Surface Temperature



b) QuikSCAT Wind Stress Magnitude with SST Overlaid



Chelton et al. 2001. JCLI

## Stratiform clouds response to the SST waves



Estimate the changes in downward shortwave radiation fluxes of ~25 W/m² → 0.75°C / month (MLD=20m)

Deser et al. 1993 JCLI

#### Large-scale air-sea interactions?



Kushnir et al. 2002. JCLI

### Eddy-mediated air-sea interaction

Spatial high-pass filtering applied to daily data to remove large-scale wind-SST relationship



#### Physics of the coupling: Modulation of MABL stratification



- 1-D turbulent boundary layer process
- A shallow and rapid adjustment (~hrs)



## A linear-regression based diagnostic metic



180E

160W

140W

120W

100W

Spatially high-pass filtering is applied a priori. Positive regression coefficient is interpreted as the oceanic forcing of the atmosphere.



## Diagnostic based on spectral approach

A newer approach is to compute the squared coherence, transfer function, and phase between oceanic and atmospheric fields as a function of wavenumber and frequency

Laurindo et al. 2018 Clim. Dyn.

#### Ocean current effects on wind stress

 $\tau = \rho_a C_D (\underline{W} - \underline{U})^2$ 

#### Time-mean SST

Time-mean wind stress curl



The GS current manifest in reserse in wind stress

Chelton et al. 2004 Science

#### Effect of surface current on wind stress

$$\tau = \rho_a C_D (\underline{W} - \underline{U})^2$$



Seo et al. 2016 JPO

## Deep response in the atmosphere



Minobe et al. 2008 Nature



## Northern Hemisphere atmospheric storm track climatology



Growth rate of the extratropical cyclones is proportional to low-level baroclinicity

$$\sigma = 0.31 \frac{g}{T} |\nabla T| / N$$

Storm track over the Kuroshio and Gulf Stream

Seo et al. 2014. JGR

## Local atmospheric response: Anchoring of storm tracks



Ogawa et al. 2012. GRL

#### Remote atmospheric circulation response





Strong Kuroshio SST front strengthens the storm track in the west and pushes northward in the downstream.

— Is this a robust response?

Kuwano-Yoshida et al. 2017. JCLI

#### Atmospheric GCM Response to Extratropical SST Anomalies: Synthesis and Evaluation\*

Y. Kushnir, W. A. Robinson, I. Bladé, N. M. J. Hall, S. Peng, \*\* and R. Sutton ++

Kushnir et al. 2002 <sup>+</sup>Lamont-Doherty Earth Observatory, Columbia University, Palisades, New York #Department of Atmospheric Sciences, University of Illinois at Urbana–Champaign, Urbana, Illinois

The observed standard deviation of 500-hPa heights on monthly to interannual timescales is of the order of 50– 100 m. Thus, while it is possible for the response to an SST anomaly to provide a significant signal at the 500-

GCM responses to extratropical SST anomalies with realistic spatial sizes and amplitudes of up to a few degrees are on the order of 10–20 gpm K<sup>-1</sup> anomaly at 500 hPa. These values are in agreement with the-

#### SSTA associated w/ shift of the GS of ±1K



#### 250hPa Z response of ±20m.



Seo et al. 2017 JCLI

JCLI

## Complications over the WBC regions



Time-Mean Divergence (×10<sup>-5</sup> s<sup>-1</sup>)

2σ filtering (4-5% of the data) removes the time-mean convergence over the GS front.

O'Neill et al. (2017) JCLI

Divergence associated with the continuous baroclinic waveguide >> the time-mean divergence.

Parfitt and Seo (2018) GRL



#### Discussion Points

- 1. Improve understanding of the physics of air-sea coupling at increasingly small and transient scales.
- 2. Develop spatio/temporal-scale dependent diagnostic methods
- 3. Detect the eddy/front-forced midlatitude storm track variability from the intrinsic atmospheric internal variability
- 4. Quantify feedback mechanisms onto the ocean circulation/energetics, the large-scale atmospheric circulation, and the hydrologic cycle.
- Guide in situ observational strategies and satellite remote sensing and coordinate modeling studies

# US CLIVAR Working Group on Mesoscale and Frontal-Scale Ocean-Atmosphere Interactions and Influence on Large-Scale Climate

- Construct a common modeling framework to diagnose the air-sea interaction
- Develop a strategy for a "Mesoscale Grand Challenge" multi-model inter comparison experiment.
- Guide in situ and satellite observations for optimum sampling of spatial and temporal scales for study of mesoscale air-sea interaction

#### **US WG members (Confirmed so far)**

Larry O'Neill (OSU) & Hyodae Seo (WHOI): Co-Chairs
Angeline Pendergrass (NCAR), Jim Edson (WHOI),
Ben Kirtman (Univ. Miami), Baylor Fox-Kemper
(Brown), Justin Small (NCAR), Kyla Drushka (UW-APL), Niklas Schneider (U. Hawaii), Qing Wang (NPS)
Sarah Gille (Scripps) + One OCB Person

#### **International Members**

Lionel Renault (IRD, France)
Malcolm Roberts (UK Met Office)
Shoshiro Minobe (Hokkaido U,
Japan