Air-sea interaction and marine biogeochemical cycles

Photo by Kelly Carmody

Outline

- 1) Recent Advances
 - a. Gas exchange and biogeochemical cycles
 - Role of bubbles
 - Processes in partially Ice-covered waters
 - b. Aerosol solubility
- 2) Community Updates
- 3) Outstanding Questions

Gas Exchange and Bubbles

Air-sea gas exchange

- Many parameterizations exist
- Only some of them explicitly include bubbles
- Example: COAREG
 parameterization vs. data
 for CO₂ (red) and DMS
 (blue) during Hi-WinGS
 experiment

From Blomquist et al., 2017 In JGR oceans

Bubbles: Crucial for estimating biological production from O₂

 Net Community Production (NCP) calculated from bio-Argo floats

 NCP calculated without explicit bubbles are factor of 2 higher

Plant et al., 2016 Global Biogeochemical Cycles

Fraction of year when wind speed > 10 m s^{-1}

Emerson et al. 2019 JGR: Oceans

Estimating bubble flux at Ocean Station Papa

- Mean wind speed ~ 10 m s⁻¹
- Measured N₂ on mooring, 10 month-long periods within 10 years
- Data matched parameterization best when 30 to 50% of expected Liang et al. 2013 bubble flux included

Emerson et al. 2019

JGR: Oceans

What about higher wind speeds? U₁₀> 20 m s⁻¹ • Experiment at SUSTAIN wind-wave tank at University of Miami

Bubble Imager

Effect of bubbles on gas saturation anomalies

- Experiment at SUSTAIN wind-wave tank at University of Miami
- Flattening off of bubble supersaturation at high wind speeds

Effects of Ice Melt

Biological production and gas exchange as ice melts

- Study in Bras D'Ors Estuary, Canada shows peak in Gross Oxygen Production (GOP), due to photosynthesis, as sea ice melts.
- Gas exchange increases dramatically as ice melts

Manning et al., Biogeosciences, in press

Marginal Ice Zone: Productivity and gas exchange

- CO₂ build-up due to respiration during ice-covered months
- Enhanced gas exchange when ice melts
- Enhanced primary production heat fluxes affecting ice & light penetration

Deppeler and Davidson, 2017, Frontiers in Marine Science

Bigdeli et al. 2018 JGR Oceans Aerosol Solubility

Aerosol Solubility

- Aerosol iron solubility depends on pyrogenic iron fraction and iron concentration
- But even including those factors, models underestimate by factor of 15 in the Southern Ocean (better match other basins)

Aerosol Solubility

- Aerosol iron solubility depends on pyrogenic iron fraction and iron concentration
- But even including those factors, models underestimate by factor of 15 in the Southern Ocean (better match other basins)

From Ito et al., 2019

Science Advances

Community Updates

Ocean Atmosphere Interaction Subcommittee

- Subcommittee of Ocean Carbon Biogeochemistry (OCB)
- Focus is on ocean-atmosphere interactions and their role in marine biogeochemical cycles

https://www.usocb.org/about/ocbsubcommittees/subcommitte e-on-ocean-atmosphereinteractions/

Rachel Stanley

Tom Bell

Yuan Gao

Kate Mackey

Nicholas Meskhidze

Bill Miller

Dave Kieber

Henry Potter

Penny Vlahos

Patricia Yager

Ccean Carbon & Biogeochemistry

Cassandra Gaston

David Ho

Upcoming workshop

OCB Ocean-Atmosphere Interactions: Scoping directions for U.S. research

October 1-3, 2019 (Sterling, Virginia, USA)

- Workshop will identify research priorities, produce US-SOLAS science plan, and facilitate communication
- Registration closed but we would still like your input!

https://web.whoi.edu/air-sea-workshop/

Email <u>rachel.stanley@wellesley.edu</u> or <u>hbenway@whoi.edu</u> with your ideas

SOLAS Open Science Conference, April 2019

For Event Report:

http://solas-int.org.customers.tigertech.net/files/solasint/content/downloads/Activities/OSC/OSC%202019/SOL AS%20Event%20Report Issue%2014 OSC2019.pdf

Outstanding Questions on Air-Sea Interactions and Biogeochemical Cycles

- How best to model fluxes of gas exchange for bioactive gases in non-standard environments coastal systems, with surfactants, high winds, etc.?
- What properties of marine aerosols are important for modulating oceanic primary production and biogeochemical cycles of carbon and other elements?
- What will the effects of ocean deoxygenation be on biogeochemical cycles of carbon and nitrogen and on marine biota?
- How will changes in stratification driven by changes in heat flux affect upper ocean primary productivity in different regions?
- For many processes: What are expected changes? important feedbacks? tipping points?

For more, see white paper that will be produced by the upcoming OCB Ocean Atmosphere Interaction Workshop!

Effect of bubbles on gas saturation anomalies

 Bubbles serve as direct conduit for gas exchange, especially for lower solubility gases (O₂, noble gases, sometimes CO₂)

From Hamme et al. 2018

Marginal Ice Zone Processes

Present

Future

Deppeler and Davidson, 2017 Frontiers in Marine Science