Synthesizing climate uncertainties and decision making in complex interdependent coastal systems

Nathan M. Urban

Computational Physics and Methods (CCS-2)

Los Alamos National Laboratory

with: Alice Barthel (LANL), Russell Bent (LANL), Mira Berdahl (UW/LANL), Darin Comeau (LANL), Mike Dinniman (Old Dominion), Devin Francom (LANL), Dallas Foster (Oregon State/LANL), Matthew Hecht (LANL), Alex Jonko (LANL), John Klinck (Old Dominion), Gunter Leguy (NCAR), Bowen Li (Michigan/LANL), Bill Lipscomb (NCAR), Chris Little (AER, Inc.), David Moulton (LANL), Balu Nadiga (LANL), Donatella Pasqualini (LANL), Joel Rowland (LANL), Ryan Sriver (UIUC), Eric Steig (UW), Byron Tasseff (LANL/Michigan), Milena Veneziani (LANL), Tarun Verma (LANL), Site Wang (Instacart/Clemson/LANL), Wilbert Weijer (LANL), Phillip Wolfram (LANL), Chonggang Xu (LANL)

DOE ECR, "Combining System and Model Dynamics to Learn about Climate Uncertainties" (Urban) LANL LDRD, "Adaptation Science for Complex Natural-Engineered Systems" (Pasqualini, Urban, Rowland) DOE BER, "High-Latitude Application and Testing of Earth System Models" (Weijer, Rasch, Maslowski)

Operated by Los Alamos National Security, LLC for NNSA

April 23, 2019

... and others ...

LA-UR-19-24103

UNT

Coastal resilience: Science questions, science gaps

- are useful for coastal decision making?
- the presence of uncertainty?

Operated by Los Alamos National Security, LLC for NNSA

1. How do we **combine information** from scientific studies to arrive at actionable predictions that

2. How do we make decisions about complex, large-scale, interdependent coastal systems in

From synthesis reports to synthesis products

U.S. Global Change Research Program

CLIMATE CHANGE 2013

The Physical Science Basis

CLIMATE SCIENCE SPECIAL REPORT

WORKING GROUP I CONTRIBUTION TO THE FIFTH ASSESSMENT REPORT OF THE INTERGOVERNMENTAL PANEL ON CLIMATE CHANGE

WGI

IPCC AR5 (2013)

Fourth National Climate Assessment | Volume I

NCA4 (2018)

Operated by Los Alamos National Security, LLC for NNSA

Climate Central

"Translational science": from climate models to decisions

Operated by Los Alamos National Security, LLC for NNSA

Knutti et al. (2017)

Uncertainty quantification

Kopp et al. (2014) DHS (2015)

We still don't have high-fidelity, multi-model SLR uncertainties

High-resolution multi-model uncertainty in High-resolution multi-model dynamical downscaling of eddy-driven ocean heat transport nonlinear ice-ocean instabilities

000

Berdahl et al. (in prep)

Operated by Los Alamos National Security, LLC for NNSA

Barthel et al. (in prep)

Towards modular frameworks for data-model information fusion

Modular information fusion for coastal resilience

Need for quantitative, transparent, traceable, up-to-date synthesis

- Can we devise a synthesis process that is more quantitative, transparent, and traceable (and "updatable")?
 - Allow experts to study, challenge, change assumptions; examine impact on conclusions
 - Update with new (perhaps customized) studies and analysis
 - Reconcile disparate scenarios / assumptions
- Modular information fusion decomposes problem into digestible questions about about system responses
 - What is the range of future global ocean warming? How does basal melt depend on ocean warming? How does ice disintegration depend on basal melt?
- Formulate probabilistic, quantitative answers to each question; insert your own models / data/ judgment

Operated by Los Alamos National Security, LLC for NNSA

Little, Urban, Oppenheimer (2013); Little, Oppenheimer, Urban (2013)

The science of complex adaptive systems

- Consider integrated resilience planning in a major coastal region
- Sectors: power, water, transportation, communications, housing, industry...
- The number of affected systems and possible decisions is vast
- "Everything influences everything": many tradeoffs and constraints
- What does the "landscape" of resilience strategies look like?

Pasqualini et al. (2017)

Some characteristics of planning in complex adaptive systems

- Motivating example: regional U.S. power grid
- Thousands of assets to manage
- Networked system; cascading failures
- Multiple interacting planning agencies (e.g. utilities)
- Interconnected web of decisions (flood protection, capacity expansion, shift toward renewables / distributed generation, ...)
- Hazards and effects of decisions are global not local
- To understand vulnerabilities, it is not sufficient to superimpose a map of impacts on a map of assets

We can't always determine all the "good" options in advance

- Common approach: generate a set of impact scenarios; evaluate them against a stakeholder-specified "menu" of decision options
- In complex interdependent systems, with cascading consequences, this does not always help us understand what to do!
 - Can't easily anticipate the downstream consequences of actions
 - Decision space is exponentially large
 - May be impossible to pre-specify the set of options worth considering

Simulation and computational decision search for complex systems

- "SimCity" vulnerability analysis: simulate regional natural-humanengineered system over probability distribution of impacts
 - system dynamics, not just GIS hazard maps
- Interdependent infrastructures, economics, ecosystems, ...
- Computationally-aided decision search to intelligently/efficiently search for strategies meeting design objectives, e.g.:
 - minimize cost
 - achieve required level of reliability
 - respect physical/engineering design constraints
 - respect geographic/political/stakeholder constraints
- Decision support tools to identify potentially useful tradeoffs in complex decision problems that unaided humans might not find

Operated by Los Alamos National Security, LLC for NNSA

Adaptation budget

Complex network adaptation can find lower-cost reliable strategies

Conclusions

- state-of-the-art science
- We can't afford to "leave science on the table": translate diverse studies into usable predictions
- Synthesis grand challenge: Combining diverse collections of different, specialized models and data sets, each with their own biases and uncertainties
- ... a more formalized quantitative version of IPCC/NCA assessment science
- Integrated adaptation challenges exist in a complex, difficult-to-understand space of consequences, goals, tradeoffs, and constraints
- A more formalized decision science may be needed to solve these complex adaptation problems

Coastal planning will require increasingly sophisticated synthesis data products based on agile,

