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Sensitivity of an Antarctic ice sheet model 
to sub-ice-shelf melting

William Lipscomb1, Gunter Leguy1, Mira Berdahl2, Nathan Urban2 

Theory and observations suggest that marine-based sectors of the
Antarctic ice sheet could retreat rapidly under ocean warming and
increased melting beneath ice shelves. Numerical models of marine ice
sheets vary widely in sensitivity, depending on grid resolution and
physics parameterizations.

Here we present early results from a study of Antarctic ice sheet
sensitivity to sub-shelf melting, using the Community Ice Sheet Model
(CISM). We first spin up the model, aiming to match observed Antarctic
ice thickness, velocity, and grounding-line locations as closely as
possible given model physics, grid resolution, and forcing. We relax
toward the observed thickness by inverting for basal friction parameters
(for grounded ice) and basal mass balance (for floating ice shelves).

Using the inverted parameters, the spun-up 8-km model is forced for
200 years with a basal melt rate based on the initMIP-Antarctica
experiments. Relative to a control run, the ice mass drops by about 500
Gy/yr for a moderate melt rate and by more than 2500 Gt/yr for an
extreme melt rate. The majority of lost mass is already floating; for the
extreme melt rate, the loss of mass above flotation is about 600 Gt/yr.
The next step is to repeat the experiments on finer grids for more
accurate simulation of grounding lines.

Abstract Inversion method
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Community Ice Sheet Model Antarctic spin-up

Version 2 of the Community Ice Sheet Model (CISM2) is a 3D, parallel,
higher-order ice sheet model that runs on a structured horizontal mesh.
For the experiments described here, we ran on an 8-km mesh,
initialized with observed thickness (Figure 1), with the following options:
• A depth-integrated higher-order solver based on Goldberg (2011)
• A basal sliding law based on Schoof (2005), combining power-law

and Coulomb behavior
• A grounding-line parameterization verified for the MISMIP3d and

MISMIP+ experiments (Pattyn et al. 2013, Asay-Davis et al. 2016)
• A no-advance calving criterion, with a subgrid calving-front scheme

similar to Albrecht et al. (2011)
• Surface mass balance from late 20th century simulations with the

RACMO2 regional climate model (Noël et al. 2017)
CISM previously participated in the initMIP-Greenland experiments
(Goelzer et al. 2017). This is CISM’s first use for Antarctic simulations.

In order to simulate a steady-state Antarctic ice sheet without large
thickness and velocity errors, we developed an inversion scheme
similar to that of Pollard and DeConto (2012):
• For grounded ice we invert for a 2D field of basal friction parameters

in the Schoof (2005) sliding law. Friction is increased where the ice
is thinner than observed and/or is thinning; friction is decreased
where the ice is thicker than observed and/or is thickening.

• For floating ice shelves, an artificial basal mass balance is applied to
hold the thickness at its observed value.

Future Work

After the spin-up, we ran forward experiments for 200 years with
basal friction parameters and sub-shelf melt rates prescribed from
the inversion. The left panel of Figure 5 shows the applied basal melt
rate from initMIP-Antarctica (Seroussi et al. 2017). The center and
right panels show changes in ice thickness for the Amundsen Sea
region and all of Antarctica, respectively.

Thinning is greatest in the Amundsen Sea sector, which has the
largest melt rates (~14 m/yr) along with reverse-sloping beds that
favor retreat. Several large East Antarctic ice streams thicken as a
result of grounding-line advance; this is possible because the
inverted basal melt is applied only to floating ice during forward runs.

We also applied an extreme melt rate, 10 times larger than the
initMIP rate. This rate drives mass loss of about 2500 Gt/yr over 200
years. About one-fourth of this mass loss would increase sea level;
the other lost ice was already floating.

• Repeat the spin-up and melt experiments on finer grids. With
available computing resources, CISM can be run for many
centuries for all Antarctica at resolutions as fine as 2 km.

• Replace the schematic melt rates with sub-shelf melt rates derived
from the ROMS regional ocean model, forced by atmospheric
output from global climate change experiments.

• Incorporate the results in statistical and reduced models that can
translate large-scale Earth-system model projections to changes in
Antarctic ice mass and global mean sea level.
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The model was spun up to quasi-equilibrium over 20,000 years. The ice
thickness gradually approaches a steady state as basal friction
parameters and internal temperatures evolve. Figure 2 shows the
modeled surface ice speed (right) compared to observations (left).
CISM captures the main flow features, including fast-flowing ice
streams such as Pine Island and Thwaites Glaciers. On the Siple
Coast, the inversion yields ice streams in areas that are now stagnant
but may have been active in the recent past.

Figure 3 shows the thickness error at the end of the spin-up. In most
regions the model thickness differs from observations by ~100 m or
less, although some regions (e.g., the Siple Coast) are too thick, and
others (e.g., the Transantarctic Mountains) are under-resolved and
noisy. Figure 4 shows the 2D field of ‘beta’, defined as the ratio
between basal shear stress and velocity.

Sensitivity to sub-shelf melting

Figure 5. Applied basal melt rate (m/yr) 
(left). Change in thickness (m) after 200 
years: Amundsen Sea region (center), 
all Antarctica (right).

Figure 1. Left: Antarctic basal topography (m), courtesy of M. Morlighem. 
Right: Antarctic ice thickness (m).

1 Climate and Global Dynamics Laboratory, National Center for Atmospheric Research,  2 Group CCS-2, Los Alamos National Laboratory

Figure 2. Left: Observed surface ice speed (m/yr, log scale; Rignot et al. 2011).
Right: CISM surface ice speed at the end of a 20,000-year spin-up. 

Figure 3. Thickness difference (m),
model spin-up vs. inversion target.

Figure 4. Basal friction coefficient ‘beta’ 
(Pa (m/yr)-1/3, log scale) at end of spin-up.
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Coastal resilience: Science questions, science gaps

1. How do we combine information from scientific studies to arrive at actionable predictions that 
are useful for coastal decision making? 

2. How do we make decisions about complex, large-scale, interdependent coastal systems in 
the presence of uncertainty?



From synthesis reports to synthesis products

C L I M AT E  S C I E N C E
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“Translational science”: from climate models to decisions
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Bias correction
IS-ENES

The choice of σD and σS determines
how strongly the model performance
and similarity are weighted. A large σD
effectively converges to model democ-
racy, whereas a small σD puts the
weight on only a few models; σS deter-
mines a typical distance by which a
model would be considered similar to
another one. The choice of those
values is discussed along with the
results. A more formal way of treating
dependence would be desirable, but
the conceptual ideas being discussed
are not applicable in an obvious
way [Annan and Hargreaves, 2016].
Dependence and performance are
treated independently here, and one
concern may be that two independent
models converging to reality become
more similar in our definition of S and
thus might be penalized unjustly. A
similarity metric based on correlation
[Watterson, 1996] would eliminate this
but would lose information on the
absolute distance. For the metrics con-
sidered here, the typical distance to
observation is large compared to the
distance between duplicate models,
and the results are rather insensitive
to how strongly model dependence is
weighted. That should alleviate con-
cerns, but these questions will require
further conceptual work and testing in
various applications.

3. Application to Arctic Sea
Ice and Temperature
Projections

To demonstrate the application and
skill of the proposed method, we con-
sider projections of Arctic September
temperature and sea ice. Figures 1a
and 1b show time series of absolute
Arctic mean temperature and total
sea ice extent for each CMIP5 simula-
tion (historical and Representative
Concentration Pathway (RCP4.5), all
initial condition members), respec-
tively. CMIP3 simulations with the
SRES B1 scenario are also included.
While not identical, B1 and RCP4.5 are
similar enough to be analyzed
jointly [Knutti and Sedláček, 2012].

Figure 1. (a) Arctic (60–90°N) September surface air temperature and (b)
Arctic September sea ice extent in all CMIP3/5 simulations. Yellow,
orange, and red indicate those that get >0.5%, >1%, and >5% weight,
respectively, from weighting with equation (1). Observations (National
Centers for Environmental Prediction, NCEP) are shown in blue. (c) Mean
and 5–95% range for no weighting (black line and grey band) and
weighting (red line and band). Colored dots near 2050 and 2100 show
2046–2055 and 2090–2099 average sea ice extent using (from left to right)
the following metrics: (1) none (unweighted), (2) climatological mean
(1980–2013) September sea ice extent, (3) September sea ice extent trend
1980–2013, (4) climatology of monthly surface temperature (1980–2013),
(5) interannual variability of monthly surface temperature, and (6) all 2–5.

Geophysical Research Letters 10.1002/2016GL072012
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as rain, freezing rain (rain falling through a surface layer below freezing),
snow, or hail, extreme precipitation can cause significant damage
(Peters et al., 2001). The absence of precipitation (McKee et al., 1993) as
well as excess evapotranspiration from the soil (see Box 3-3) can be
climate extremes, and lead to drought. Extreme surface winds are
chiefly associated with structured storm circulations (Emanuel, 2003;
Zipser et al., 2006; Leckebusch et al., 2008). Each storm type, including
the most damaging tropical cyclones and mid-latitude extratropical
cyclones, as well as intense convective thunderstorms, presents a
spectrum of size, forward speed, and intensity. A single intense storm
can combine extreme wind and extreme rainfall. 

The prolonged absence of winds is a climate extreme that can also be a
hazard, leading to the accumulation of urban pollution and disruptive
fog (McBean, 2006).

The behavior of the atmosphere is also highly interlinked with that of
the hydrosphere, cryosphere, and terrestrial environment so that extreme
(or sometimes non-extreme) atmospheric events may cause (or contribute
to) other rare physical events. Among the more widely documented
hydroclimatic extremes are:

• Large cyclonic storms that generate wind and pressure anomalies
causing coastal flooding and severe wave action (Xie et al., 2004). 

• Floods, reflecting river flows in excess of the capacity of the normal
channel, often influenced by human intervention and water
management, resulting from intense precipitation; rapid thaw of
accumulated winter snowfall; rain falling on previous snowfall (Sui
and Koehler, 2001); or an outburst from an ice, landslide, moraine,
or artificially dammed lake (de Jong et al., 2005). According to the
scale of the catchment, river systems have characteristic response
times with steep short mountain streams, desert wadis, and urban
drainage systems responding to rainfall totals over a few hours, while
peak flows in major continental rivers reflect regional precipitation
extremes lasting weeks (Wheater, 2002).

• Long-term reductions in precipitation, or dwindling of residual
summer snow and ice melt (Rees and Collins, 2006), or increased
evapotranspiration from higher temperatures, often exacerbated
by human groundwater extraction, reducing ground water levels
and causing spring-fed rivers to disappear (Konikow and Kendy,
2005), and contributing to drought.

• Landslides (Dhakal and Sidle, 2004) when triggered by raised
groundwater levels after excess rainfall or active layer detachments
in thawing slopes of permafrost (Lewcowicz and Harris, 2005). 

1.2.3. Extreme Impacts

1.2.3.1. Three Classes of Impacts

In this subsection we consider three classes of ‘impacts’: 1) changes in
the natural physical environment, like beach erosion from storms and
mudslides; 2) changes in ecosystems, such as the blow-down of forests
in hurricanes, and 3) adverse effects (according to a variety of metrics)
on human or societal conditions and assets. However, impacts are not
always negative: flood-inducing rains can have beneficial effects on the
following season’s crops (Khan, 2011), while an intense freeze may
reduce insect pests at the subsequent year’s harvest (Butts et al., 1997).

An extreme impact reflects highly significant and typically long-lasting
consequences to society, the natural physical environment, or ecosystems.
Extreme impacts can be the result of a single extreme event, successive
extreme or non-extreme events, including non-climatic events (e.g.,
wildfire, followed by heavy rain leading to landslides and soil erosion),
or simply the persistence of conditions, such as those that lead to
drought (see Sections 3.5.1 and 9.2.3 for discussion and examples).

Chapter 1 Climate Change: New Dimensions in Disaster Risk, Exposure, Vulnerability, and Resilience
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Figure 1-2 | The effect of changes in temperature distribution on extremes. Different
changes in temperature distributions between present and future climate and their
effects on extreme values of the distributions: a) effects of a simple shift of the entire
distribution toward a warmer climate; b) effects of an increased temperature variability
with no shift of the mean; and c) effects of an altered shape of the distribution, in this
example an increased asymmetry toward the hotter part of the distribution.
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Where are there still science gaps in climate synthesis products?
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projections. If accounted for, forcing uncertainty is likely to increase the range of projections
we have produced.

4 Summary

We have applied a novel Bayesian hierarchical model approach to understanding the uncer-
tainty around equilibrium climate sensitivity estimates derived from the state-of-the-art suite of
CMIP5 Earth system models, constrained using several observational datasets of surface
temperature. We find that pooling data from different climate models in a hierarchical
Bayesian framework only slightly narrows the PDF of climate sensitivity, when compared to
a moment matched distribution based on individual inference. Adding observations to the
likelihood function shifts its mean value downward, although the width of the 90% range of
ECS remains the same as when no observational update is used. These changes are mirrored in
future projections, where we see decreased temperature anomalies at the end of the century,
when observations are added to the inference. Overall, however, the 90% ranges of RCP8.5
EBM simulations based on parameter combinations from the hierarchical inference with and
without observational update are consistent with the range of CMIP5 simulations. This is not
surprising, given that the surface temperature constraint is rather weak. Since some ESMs are
tuned to reproduce historical surface temperatures (Schmidt et al. 2017), using this variable as
an update in our inference does not introduce substantial new data to the problem. This
situation could be remedied by expanding our EBM to incorporate additional output variables
that can be constrained with different observations. Future work will explore building a more
complex reduced model that will allow us to add more variables and parameters. It is important

Fig. 4 Ninety percent ranges (5 to 95%) of joint predictive envelopes of EBM simulations of the historical
period + RCP8.5 forcing scenario for inference without (green) and with the average observational update
(purple) show a decrease in projected warming when observations are incorporated in the inference. Compare to
observational time series (black) and CMIP5 simulations (gray)

Climatic Change (2018) 149:247–260 257

Data-model fusion 
Dynamical bias correction

each other and with other parameters. The hierarchical likelihood function is then a product of
the individual likelihood functions, each multiplied by the nearness constraint, and the
posterior factorizes as

Θm;ΘjYm½ "∝ ∏
m

YmjΘm½ " ΘmjΘ½ "
! "

Θ½ " ð6Þ

We sample the hierarchical model posterior jointly over all ESM parameters and hierarchi-
cal parameters. Thus, we sample 24 × 6 + 6 = 150 EBM parameters and 24 × 5 + 5 = 125
statistical parameters. When moving parameters for all models at a time, we take smaller steps

Fig. 1 a Comparison of ECS distributions derived using a Gaussian fit to point estimates (blue), a mixture
distribution obtained by combining individual inferences for 24 ESMs (gray) and the corresponding moment
matching distribution (red). The prior is also plotted for reference (black, dashed line). b Comparison of ECS
posterior distributions derived from hierarchical inference using (i) no observational data (green), (ii) observa-
tional updates with one temperature dataset at a time (orange), and (iii) an observational update using an average
of the 4 datasets (purple)

Climatic Change (2018) 149:247 –260 253
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Sensitivity of an Antarctic ice sheet model 
to sub-ice-shelf melting

William Lipscomb1, Gunter Leguy1, Mira Berdahl2, Nathan Urban2 

Theory and observations suggest that marine-based sectors of the
Antarctic ice sheet could retreat rapidly under ocean warming and
increased melting beneath ice shelves. Numerical models of marine ice
sheets vary widely in sensitivity, depending on grid resolution and
physics parameterizations.

Here we present early results from a study of Antarctic ice sheet
sensitivity to sub-shelf melting, using the Community Ice Sheet Model
(CISM). We first spin up the model, aiming to match observed Antarctic
ice thickness, velocity, and grounding-line locations as closely as
possible given model physics, grid resolution, and forcing. We relax
toward the observed thickness by inverting for basal friction parameters
(for grounded ice) and basal mass balance (for floating ice shelves).

Using the inverted parameters, the spun-up 8-km model is forced for
200 years with a basal melt rate based on the initMIP-Antarctica
experiments. Relative to a control run, the ice mass drops by about 500
Gy/yr for a moderate melt rate and by more than 2500 Gt/yr for an
extreme melt rate. The majority of lost mass is already floating; for the
extreme melt rate, the loss of mass above flotation is about 600 Gt/yr.
The next step is to repeat the experiments on finer grids for more
accurate simulation of grounding lines.

Abstract Inversion method
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Community Ice Sheet Model Antarctic spin-up

Version 2 of the Community Ice Sheet Model (CISM2) is a 3D, parallel,
higher-order ice sheet model that runs on a structured horizontal mesh.
For the experiments described here, we ran on an 8-km mesh,
initialized with observed thickness (Figure 1), with the following options:
• A depth-integrated higher-order solver based on Goldberg (2011)
• A basal sliding law based on Schoof (2005), combining power-law

and Coulomb behavior
• A grounding-line parameterization verified for the MISMIP3d and

MISMIP+ experiments (Pattyn et al. 2013, Asay-Davis et al. 2016)
• A no-advance calving criterion, with a subgrid calving-front scheme

similar to Albrecht et al. (2011)
• Surface mass balance from late 20th century simulations with the

RACMO2 regional climate model (Noël et al. 2017)
CISM previously participated in the initMIP-Greenland experiments
(Goelzer et al. 2017). This is CISM’s first use for Antarctic simulations.

In order to simulate a steady-state Antarctic ice sheet without large
thickness and velocity errors, we developed an inversion scheme
similar to that of Pollard and DeConto (2012):
• For grounded ice we invert for a 2D field of basal friction parameters

in the Schoof (2005) sliding law. Friction is increased where the ice
is thinner than observed and/or is thinning; friction is decreased
where the ice is thicker than observed and/or is thickening.

• For floating ice shelves, an artificial basal mass balance is applied to
hold the thickness at its observed value.

Future Work

After the spin-up, we ran forward experiments for 200 years with
basal friction parameters and sub-shelf melt rates prescribed from
the inversion. The left panel of Figure 5 shows the applied basal melt
rate from initMIP-Antarctica (Seroussi et al. 2017). The center and
right panels show changes in ice thickness for the Amundsen Sea
region and all of Antarctica, respectively.

Thinning is greatest in the Amundsen Sea sector, which has the
largest melt rates (~14 m/yr) along with reverse-sloping beds that
favor retreat. Several large East Antarctic ice streams thicken as a
result of grounding-line advance; this is possible because the
inverted basal melt is applied only to floating ice during forward runs.

We also applied an extreme melt rate, 10 times larger than the
initMIP rate. This rate drives mass loss of about 2500 Gt/yr over 200
years. About one-fourth of this mass loss would increase sea level;
the other lost ice was already floating.

• Repeat the spin-up and melt experiments on finer grids. With
available computing resources, CISM can be run for many
centuries for all Antarctica at resolutions as fine as 2 km.

• Replace the schematic melt rates with sub-shelf melt rates derived
from the ROMS regional ocean model, forced by atmospheric
output from global climate change experiments.

• Incorporate the results in statistical and reduced models that can
translate large-scale Earth-system model projections to changes in
Antarctic ice mass and global mean sea level.
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The model was spun up to quasi-equilibrium over 20,000 years. The ice
thickness gradually approaches a steady state as basal friction
parameters and internal temperatures evolve. Figure 2 shows the
modeled surface ice speed (right) compared to observations (left).
CISM captures the main flow features, including fast-flowing ice
streams such as Pine Island and Thwaites Glaciers. On the Siple
Coast, the inversion yields ice streams in areas that are now stagnant
but may have been active in the recent past.

Figure 3 shows the thickness error at the end of the spin-up. In most
regions the model thickness differs from observations by ~100 m or
less, although some regions (e.g., the Siple Coast) are too thick, and
others (e.g., the Transantarctic Mountains) are under-resolved and
noisy. Figure 4 shows the 2D field of ‘beta’, defined as the ratio
between basal shear stress and velocity.

Sensitivity to sub-shelf melting

Figure 5. Applied basal melt rate (m/yr) 
(left). Change in thickness (m) after 200 
years: Amundsen Sea region (center), 
all Antarctica (right).

Figure 1. Left: Antarctic basal topography (m), courtesy of M. Morlighem. 
Right: Antarctic ice thickness (m).

1 Climate and Global Dynamics Laboratory, National Center for Atmospheric Research,  2 Group CCS-2, Los Alamos National Laboratory

Figure 2. Left: Observed surface ice speed (m/yr, log scale; Rignot et al. 2011).
Right: CISM surface ice speed at the end of a 20,000-year spin-up. 

Figure 3. Thickness difference (m),
model spin-up vs. inversion target.

Figure 4. Basal friction coefficient ‘beta’ 
(Pa (m/yr)-1/3, log scale) at end of spin-up.

between the GPCP and that NAAP is that generally the
magnitude is higher in the GPCP and there is a discon-
tinuous decrease in the median precipitation in the
eastern United States when the input data source
changes from the TMPI (south) to the TOVS (north) at
408N (Figs. 3b,c). At this boundary, the percent errors in
median precipitation in the GPCP relative to the NAAP
drop from 40%–60% to 0%–20%. The pattern of error
in the CFSR relative to the NAAP is very different than
that of the GPCP (Figs. 3c,e). Differences in the CFSR
relative to the NAAP include a reduction in area and
eastward shift of the region of higher annual median
precipitation in the southeastern United States (Figs.
3d,e). However, the errors in the eastern United States
and Canada are typically less than 20%. The CFSR
has higher annual median precipitation in the Rocky
Mountains, stretching from the United States to Canada
and in much of Canada, than the NAAP (Figs. 3b,c),
with percent errors up to 60%. The potential of errors
due to station density in the NAAP in these regions are
high for the climatological median and the extreme
precipitation; however, the errors in the CFSR relative
to the NAAP in the Rockies are greater than the upper
bound of these climatological errors (Fig. 2).
There are some large climatological errors in the av-

erage annual median precipitation between the models
and the NAAP; however, the results are generally very
promising. In certain regions, such as the East Coast, the
magnitude of the percent climatological error relative
to the NAAP in the average annual median precipi-
tation is lower than that of the GPCP in the eastern
United States and Canada (Fig. 3). If we consider ob-
servational error to be the difference between reference
products, this implies that the models are within obser-
vational error in these regions. One area of substantial
errors in all the model runs is an underestimation of the

median precipitation in the southeastern United States,
with up to 40% difference relative to the NAAP, which
is smaller in the CCSM4 than in the CAM4 (not shown)
and CAM5 (Figs. 3f–i). There are some general biases
toward higher median precipitation along the West
Coast and interior mountain ranges in both models,
which are higher in the CCSM4 than the CAM5 (Figs.
3f–i). In Canada, the CAM4 (not shown), CAM5 and
CCSM4 generally perform well compared to the NAAP
except for an overestimation over the Rocky Mountains
and some higher values of median precipitation in the
north that are similar to those of the CFSR and smaller
than those of the GPCP (Figs. 3f–i).
In addition to errors in the median field, we are in-

terested in how well the distribution of precipitation is
represented. Specific locations are chosen to use as ex-
amples of these distributions, where the locations are
geographically diverse and include sample points with
different precipitation climatologies (Fig. 4). How rep-
resentative these points are of the area around them
depends on the spatial homogeneity of the precipitation
distribution, which is typically higher in the east than in
the west (not shown). The CDFs and TMFs are shown in
Figs. 5 and 6. For the CDF, we can apply the KS and
CvM tests of significance, which are used here to de-
termine whether products have the same distribution as
the NAAP. TheCDFs at these locations are significantly
different for all datasets, a result that is generally true
apart from some isolated locations (not shown). For the
TMDs we use a Monte Carlo method to determine
whether differences in the skewness of the TMDs, rel-
ative to the NAAP, are significant. The skewnesses of
the TMDs and their significances are shown for the en-
tire region of study in Fig. 7.
The northern and southern West Coast points are

within a coastal region with predominantly orographic

FIG. 1. Number of stations per CCSM4 grid box (0.98 3 1.258 latitude–longitude), averaged over
the years 1975, 1985, and 1995. Values are rounded to the nearest integer.
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2. Eddy-resolving simulations of the deep
overturning circulation

In this section we discuss the overturning circulation
and export of dense water from the continental shelf
in our reference simulation, whose imposed forcing
most strongly resembles conditions in the contempo-
rary Southern Ocean. This simulation motivates some
aspects of the residual-mean theory described in sec-
tions 3–5.

a. Modeling preliminaries

We used the Massachusetts Institute of Technology
(MIT) general circulation model (MITgcm) to con-
duct all of the simulations described herein (Marshall
et al. 1997a,b). The model parameters are summarized
in Table 1. We model a sector of the Southern Ocean
and the Antarctic continental shelf as a zonally reentrant
channel in Cartesian geometry. The channel is zonally
symmetric, and its depth is described by

h (y)5Hs 1
1

2
(H2Hs)

!
11 tanh

"
y2Ys

Ws

#$
. (1)

This geometry is illustrated in Fig. 1. For simplicity and
computational efficiency we have used a somewhat
shallower channel than the ; 4000-m depth of the real
Southern Ocean.
Flow in the channel is governed by the three-

dimensional, hydrostatic Boussinesq equations (e.g.,
Vallis 2006). We neglect the dynamical influence of sa-
linity, which is fixed at 35 psu everywhere, and prescribe
a linear dependence of density on temperature. Tem-
perature is advected using a third-order direct space–
time flux-limiting scheme. We parameterize dense water
formation by directly relaxing the temperature toward
uc 5218C over a localized area of the shelf. We choose
a relaxation time scale profile that increases exponen-
tially with horizontal distance from x 5 y 5 0,

T(x, y, z)5Tc
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x
1/2Lc

" #2
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" #

, y#Lc ,
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whereTc5 7 days andLc5 200 km. This profile has been
constructed such that the effect of temperature relaxa-
tion becomes negligibly small beyond a distance of Lc

TABLE 1. List of parameters used in our reference simulation.

Parameter Value Description

Lx 1000 km Zonal domain size
Ly 2000 km Meridional domain size
H 3000 km Maximum ocean depth
Hs 500m Ocean depth on the continental

shelf
Ys 500 km Slope center position
Ws 100 km Slope half-width
Lc 200 km Radius of shelf cooling
Tc 7 days Shelf cooling time scale
Lr 100 km Width of northern relaxation

region
Tr 7 days Northern relaxation time scale
LQ 1700 km Width of thermal surface forcing
r0 999.8 kgm23 Reference density
a 2 3 1024K21 Thermal expansion coefficient
g 9.81m2 s21 Gravitational constant
f0 21 3 1024 s21 Reference Coriolis parameter f
b 10211m21 s21 Meridional gradient of f
tACC, tASF 0.2, 20.05Nm22 Wind stress scales
Q0 10Wm22 Heat flux scale
Ah 12m2 s21 Horizontal viscosity
Ay 3 3 1024m2 s21 Vertical viscosity
A4 grid 0.1 Grid-dependent biharmonic

viscosity
C4 leith 1.0 Leith vortical viscosity
C4 leithD 1.0 Leith solenoidal viscosity
ky 5 3 1026m2 s21 Vertical diffusivity
rb 1.1 3 1023m s21 Bottom friction
Dx, Dy 4.9, 5.0 km Horizontal grid spacing
Dz 12.5m – 187.5m Vertical grid spacing
Dt 566 s Time step size

FIG. 1. Three-dimensional temperature snapshot from our ref-
erence simulation in statistically steady state. (top) The profiles of
surface wind stress and heating/cooling are shown (note that Q . 0
corresponds to heat loss to the atmosphere).

JULY 2013 S TEWART AND THOMPSON 1455

End-to-end uncertainty propagation

Sensitivity of an Antarctic ice sheet model 
to sub-ice-shelf melting

William Lipscomb1, Gunter Leguy1, Mira Berdahl2, Nathan Urban2 

Theory and observations suggest that marine-based sectors of the
Antarctic ice sheet could retreat rapidly under ocean warming and
increased melting beneath ice shelves. Numerical models of marine ice
sheets vary widely in sensitivity, depending on grid resolution and
physics parameterizations.

Here we present early results from a study of Antarctic ice sheet
sensitivity to sub-shelf melting, using the Community Ice Sheet Model
(CISM). We first spin up the model, aiming to match observed Antarctic
ice thickness, velocity, and grounding-line locations as closely as
possible given model physics, grid resolution, and forcing. We relax
toward the observed thickness by inverting for basal friction parameters
(for grounded ice) and basal mass balance (for floating ice shelves).

Using the inverted parameters, the spun-up 8-km model is forced for
200 years with a basal melt rate based on the initMIP-Antarctica
experiments. Relative to a control run, the ice mass drops by about 500
Gy/yr for a moderate melt rate and by more than 2500 Gt/yr for an
extreme melt rate. The majority of lost mass is already floating; for the
extreme melt rate, the loss of mass above flotation is about 600 Gt/yr.
The next step is to repeat the experiments on finer grids for more
accurate simulation of grounding lines.

Abstract Inversion method

References

Community Ice Sheet Model Antarctic spin-up

Version 2 of the Community Ice Sheet Model (CISM2) is a 3D, parallel,
higher-order ice sheet model that runs on a structured horizontal mesh.
For the experiments described here, we ran on an 8-km mesh,
initialized with observed thickness (Figure 1), with the following options:
• A depth-integrated higher-order solver based on Goldberg (2011)
• A basal sliding law based on Schoof (2005), combining power-law

and Coulomb behavior
• A grounding-line parameterization verified for the MISMIP3d and

MISMIP+ experiments (Pattyn et al. 2013, Asay-Davis et al. 2016)
• A no-advance calving criterion, with a subgrid calving-front scheme

similar to Albrecht et al. (2011)
• Surface mass balance from late 20th century simulations with the

RACMO2 regional climate model (Noël et al. 2017)
CISM previously participated in the initMIP-Greenland experiments
(Goelzer et al. 2017). This is CISM’s first use for Antarctic simulations.

In order to simulate a steady-state Antarctic ice sheet without large
thickness and velocity errors, we developed an inversion scheme
similar to that of Pollard and DeConto (2012):
• For grounded ice we invert for a 2D field of basal friction parameters

in the Schoof (2005) sliding law. Friction is increased where the ice
is thinner than observed and/or is thinning; friction is decreased
where the ice is thicker than observed and/or is thickening.

• For floating ice shelves, an artificial basal mass balance is applied to
hold the thickness at its observed value.

Future Work

After the spin-up, we ran forward experiments for 200 years with
basal friction parameters and sub-shelf melt rates prescribed from
the inversion. The left panel of Figure 5 shows the applied basal melt
rate from initMIP-Antarctica (Seroussi et al. 2017). The center and
right panels show changes in ice thickness for the Amundsen Sea
region and all of Antarctica, respectively.

Thinning is greatest in the Amundsen Sea sector, which has the
largest melt rates (~14 m/yr) along with reverse-sloping beds that
favor retreat. Several large East Antarctic ice streams thicken as a
result of grounding-line advance; this is possible because the
inverted basal melt is applied only to floating ice during forward runs.

We also applied an extreme melt rate, 10 times larger than the
initMIP rate. This rate drives mass loss of about 2500 Gt/yr over 200
years. About one-fourth of this mass loss would increase sea level;
the other lost ice was already floating.

• Repeat the spin-up and melt experiments on finer grids. With
available computing resources, CISM can be run for many
centuries for all Antarctica at resolutions as fine as 2 km.

• Replace the schematic melt rates with sub-shelf melt rates derived
from the ROMS regional ocean model, forced by atmospheric
output from global climate change experiments.

• Incorporate the results in statistical and reduced models that can
translate large-scale Earth-system model projections to changes in
Antarctic ice mass and global mean sea level.

Albrecht, T. et al. (2011), The Cryosphere, 5, 35-44.
Asay-Davis, X. S. et al. (2016), Geosci. Model Dev., 9, 2471-2497.
Goelzer, H. et al. (2017), The Cryosphere, in review.
Goldberg, D. N. (2011), J. Glaciol., 57, 157–170.
Leguy, G. R. et al. (2014), The Cryosphere, 8, 1239–1259.
Noël, B. et al. (2017), The Cryosphere, in review.
Pattyn, F. et al. (2013), J. Glaciol., 59 (215).
Pollard, D, and R. DeConto (2012), The Cryosphere, 6, 953-971.
Rignot, E. et al. (2011), Science, 333 (6048), 1427-1430.
Schoof, C. (2005), Proc. R. Soc., 461, 609-627.
Seroussi, H. et al. (2017), Fall AGU Meeting, Abstract C41C-1231.

The model was spun up to quasi-equilibrium over 20,000 years. The ice
thickness gradually approaches a steady state as basal friction
parameters and internal temperatures evolve. Figure 2 shows the
modeled surface ice speed (right) compared to observations (left).
CISM captures the main flow features, including fast-flowing ice
streams such as Pine Island and Thwaites Glaciers. On the Siple
Coast, the inversion yields ice streams in areas that are now stagnant
but may have been active in the recent past.

Figure 3 shows the thickness error at the end of the spin-up. In most
regions the model thickness differs from observations by ~100 m or
less, although some regions (e.g., the Siple Coast) are too thick, and
others (e.g., the Transantarctic Mountains) are under-resolved and
noisy. Figure 4 shows the 2D field of ‘beta’, defined as the ratio
between basal shear stress and velocity.

Sensitivity to sub-shelf melting

Figure 5. Applied basal melt rate (m/yr) 
(left). Change in thickness (m) after 200 
years: Amundsen Sea region (center), 
all Antarctica (right).

Figure 1. Left: Antarctic basal topography (m), courtesy of M. Morlighem. 
Right: Antarctic ice thickness (m).

1 Climate and Global Dynamics Laboratory, National Center for Atmospheric Research,  2 Group CCS-2, Los Alamos National Laboratory

Figure 2. Left: Observed surface ice speed (m/yr, log scale; Rignot et al. 2011).
Right: CISM surface ice speed at the end of a 20,000-year spin-up. 

Figure 3. Thickness difference (m),
model spin-up vs. inversion target.

Figure 4. Basal friction coefficient ‘beta’ 
(Pa (m/yr)-1/3, log scale) at end of spin-up.

Jonko et al. (2018)

Gervais et al. (2014)
Stewart & Thompson (2016)

DOE E3SM/MPAS-O
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Berdahl et al. (in prep)

Barthel et al. (in prep)

High-resolution multi-model dynamical downscaling of 
eddy-driven ocean heat transport

High-resolution multi-model uncertainty in 
nonlinear ice-ocean instabilities
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uncertain across non-B15 basins. To aid the physical interpre-
tation of the variance, we present uncertainty in non-B15 basin
discharge growth as a fraction of the historical mean growth rate
of B15. For example, with σb = 0.5μ15, a non-B15 basin has a less
than 3% chance of experiencing 100-y sustained discharge growth
rates greater than B15’s 30-y linear trend (22).
Ice discharge in different basins may be linked via internal

dynamics or shared boundary conditions. Here, two plausible sta-
tistical representations of spatially correlated discharge growth
are examined by assigning a correlation coefficient at a regional
(ρr) or a continental scale (ρa). Regions are roughly designated by
the continental shelf seas into which discharge occurs. This cor-
relation structure represents an assumption that regional oceanic
forcing is a trigger for dynamic change (17). A continental cor-
relation implies larger-scale linkages, perhaps due to changes in
surface air temperatures and precipitation, or widespread ocean
warming (19).
The sensitivity of SLR projections to discharge originating

outside of B15 is assessed by performing MC simulations with

different σb, ρr, and ρa for aggregations of basins in West Ant-
arctica (WA) and the entire Antarctic ice sheet (ALL) (Fig. 2).

2. Results
2.1. B15 Contribution to Sea Level. With constant accumulation,
extrapolations of B15 discharge (Fig. 3A) give a median 2000–
2100 SLR projection of ∼5 cm for a linear discharge growth law
(dark gray lines in Fig. 3 C and D) and 3 and 14 cm for square
root and quadratic laws, respectively (light gray lines). The
spread of SLR projections is broadened by uncertainty in the fit
(for example, a linear extrapolation gives a 10th–90th-percentile
range of 1.1–8.7 cm). However, the nature of the growth law,
particularly if quadratic growth is plausible, is the dominant
uncertainty examined here. Although the Z11 and R08 baselines
differ, the effect of these datasets on projections of B15 is small
due to offsetting differences in accumulation and discharge
(Table 1).

2.2. Non-B15 Contribution to Sea Level. When non-B15 basins are
subject to an uncertain dynamic response, they increase SLR
projections by: (i) translating the SLR distribution toward higher
values, if discharge growth rates are positive or the present-day
mass balance is negative, and (ii) widening the spread of the SLR
distribution, if discharge growth rates are uncertain. The con-
tribution of non-B15 basins is isolated in Fig. 3C, using the R08
(solid) and Z11 (dashed) baselines, with σb = 0.5μ15 and no
spatial correlation in discharge growth rates.
Median projections. Because non-B15 basins are assumed to have
normally distributed, zero-centered, discharge growth rates, their
contribution to median SLR (−0.1 to 4.0 cm) is a 100-y contin-
uation of any present-day mass imbalance and is determined by
the choice of observational baseline (Fig. 3C). Both observa-
tional baselines indicate mass loss is dominated by drainage
basins in the Antarctic Peninsula and the Amundsen Sea Sector
(basins 15–18); the WA simulations (blue lines) thus result in
a comparable (R08)—or higher (Z11)—median 2100 SLR than

Fig. 1. Schematic of the methodology used in this paper, with black arrows
illustrating the process, and the probabilistic component highlighted in the
shaded box. Dashed lines indicate an either/or choice of covariance struc-
ture, and observations are shown in boxes with a grey background. For
comparison, the process used in previous scenario-based SLR projections (3,
11) is shown with gray arrows.
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Fig. 2. Eighteen drainage basins (b) for which mass balance projections are
calculated separately. Thin, dashed outlines indicate basin divides; thick
outlines indicate the regions (r) of the ice sheet over which discharge growth
rates are correlated in this analysis. Non-B15 West Antarctic basins include
basins 1, 13, 14, and 16–18. See Table 1 for more details.

Table 1. Baseline accumulation (A2000) and discharge (Q2000) in
the 18 basins (b) and 5 regions (r) of the ice sheet in this analysis

Accumulation Discharge

r b R08 Z11 R08 Z11

1: Weddell Sea
1 165 165 169 155
2 100 100 81 78

2: East Antarctica
3 50 50 53 49
4 32 32 33 30
5 62 62 62 60
6 115 115 116 63
7 87 87 91 83
8 137 137 148 125
9 261 261 270 222

10 136 136 138 109
11 62 62 65 33

3: Ross Sea
12 89 89 76 54
13 130 130 96 87

4: Amundsen Sea
14 128 44 151 144
15 196 159 260 247
16 71 53 120 111

5: Antarctic Peninsula
17 77 58 84 82
18 157 157 178 178

Basin boundaries (and numerical identifier) are defined according to ta-
ble 4 in ref. 15 (Z11), except basin 16 (corresponds to 16.1), basin 17 (corre-
sponds to 16.2), and basin 18 (corresponds to 17).

Little et al. PNAS | February 26, 2013 | vol. 110 | no. 9 | 3265
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Figure 1. BRICK model structural diagram. Dashed connectors indicate couplings that are non-essential for projections of global mean
sea level. These dashed couplings are required for projecting regional sea-level and climate impacts. DOECLIM is the Diffusion-Ocean-
Energy balance CLIMate model (Kriegler, 2005); GIC-MAGICC is the Glaciers and Ice Caps module from the MAGICC climate model
(Meinshausen et al., 2011a); TE is the Thermal Expansion model (Grinsted et al., 2010; Mengel et al., 2016); SIMPLE is the Simple Ice-
sheet Model for Projecting Large Ensembles (Bakker et al., 2016); ANTO is the ANTarctic Ocean temperature model; DAIS is the Danish
Center for Earth System Science Antarctic Ice Sheet model (Shaffer, 2014); regional sea-level fingerprinting downscales from global sea-level
contributions to regional (Slangen et al., 2014); and the model of Van Dantzig (1956) assesses flood risk.

rise) components of BRICK are intentionally simple. This
choice is guided by the epistemic modeling values outlined
below.

2.2 Epistemic modeling values

2.2.1 Accessibility

We selected R (R Core Team, 2016) as the base language
for BRICK because it is (i) stable, (ii) freely available and
open source, (iii) relatively easy to use, and (iv) easy to
call subroutines written in faster languages. In the BRICK
source code accompanying this study, the physical sub-
models within the climate and sea-level rise modules are all
provided as both R and Fortran 90 routines. It is our aim that
the full physical–statistical model of BRICK will be acces-
sible using a modern laptop. This means that sizable Monte
Carlo simulations (on the order of a million samples) must
be possible on a timescale of hours. This is made possible by
calling Fortran 90 sub-models from the base code in R.

In addition to conceptual accessibility, it is our view that
useful model codes should be physically accessible too.
Openness with scientific codes is likely to lead to higher
quality codes (Easterbrook, 2014). In an effort to be truly
open source and freely available, all codes – including the
physical model, statistical model, and processing and plot-
ting scripts used for the results shown here – are available
through a download server as well as the Github reposi-
tory provided in the Code Availability section of this article.
Providing all code and data necessary to recreate this study
is a critical component of reproducible research (Murray-
Rust and Murray-Rust, 2014) and can help to build trust be-
tween the general public and the scientific community (East-
erbrook, 2014; Grubb and Easterbrook, 2011).

2.2.2 Transparency

We aim to achieve transparency in two areas: the physical
modeling, including the related model code, and the commu-
nication of scientific findings.

www.geosci-model-dev.net/10/2741/2017/ Geosci. Model Dev., 10, 2741–2760, 2017
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Figure 1. Logical flow of sources of information used in local sea-level projections. GCMs, global climate models; GIC, glaciers and ice
caps; SMB: surface mass balance.

2.1. Ice Sheets
Our projections of 21st-century changes in mass balance of GIS and the Antarctic ice sheet (AIS) are gener-
ated by combining the projections of AR5 and the expert elicitation of Bamber and Aspinall [2013] [BA13].
AR5 is used to characterize median and likely ranges of sea-level change, while BA13 is used to calibrate
the shape of the tails (Supporting Information Figure S1 and Table S1).

AR5 separately assesses AIS and GIS mass balance changes driven by SMB and ice sheet dynamics. For ice
sheet dynamics, AR5 determined that there was insufficient knowledge to differentiate between RCP 2.6
and 4.5 (and 8.5 for AIS). Projections of total ice sheet mass loss—given as a likely cumulative sea-level rise
contribution—are thus partially scenario-independent. BA13 probed more deeply into the tail of ice sheet
mass loss projections, inquiring into the 5th–95th percentile ranges of GIS, EAIS, and WAIS. However, BA13
does not differentiate between SMB and ice sheet dynamics or between RCPs.

We reconcile the projections as described in the Supporting Information. For AIS, the reconciled RCP
8.5 projections (median/likely/very likely [90% probability] of 4/−8 to 15/−11 to 33 cm) are significantly
reduced in range relative to BA13 (median/likely/very likely of 13/2 to 41/−2 to 83 cm); for GIS, the recon-
ciled projections are almost identical to those based directly on AR5 and have a likely range (8–25 cm)
close to the very likely range estimated from BA13 (9–29 cm) (Supporting Information Table S1).

Ice sheet mass balance changes do not cause globally uniform sea-level rise. To account for the differing
patterns of static-equilibrium sea-level rise caused by land ice mass loss, we apply sea-level fingerprints,
calculated after Mitrovica et al. [2011] (Supporting Information Figure S2). These fingerprints assume mass
loss from each ice sheet is uniform; in most regions, the error introduced by this assumption is minimal
[Mitrovica et al., 2011].

2.2. Glacier and Ice Caps
For each RCP, we generate mass balance projections for 17 different source regions of glaciers and ice caps
(described in the Supporting Information). For each source region, we employ a multivariate t-distribution
of ice mass change with a mean and covariance estimated from the process model results of Marzeion
et al. [2012]. Each source region has a distinct static-equilibrium sea-level fingerprint, calculated in the
same fashion as for ice sheet mass loss (Supporting Information Figure S2).

The projections based on Marzeion et al. [2012] are modestly narrower and have a slightly higher median
than those of AR5: a likely range of 9–15 cm from non-Antarctic glaciers by 2100 for RCP 2.6 (vs. 4–16 cm
for AR5) and 14–21 cm for RCP 8.5 (vs. 9–23 cm for AR5). We opt for the Marzeion et al. [2012] projections
because of the availability of disaggregated output representing projections based on a suite of global
climate models (GCMs) for each source region.

KOPP ET AL. © 2014 The Authors. 385
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is 143 6 10Sv (1 Sv 5 106m3 s21), which matches quite
well with the mean and variability of observational es-
timates of 134 6 11Sv (Cunningham et al. 2003) and
141 6 13Sv (Koenig et al. 2014). The ACC volume trans-
port is likely important to on-shelf heat transport, especially
where the ACC impinges on the shelf break (e.g.,
Amundsen–Bellingshausen sector), as fully eddy-resolving
models have shown a relationship between the shelf-break
jet speed and the on-shelf heat transport (e.g., St-Laurent
et al. 2013). Eddy kinetic energy (EKE; Fig. 2) computed
for a model layer near, but below, the surface (layer 26:
; 100m deep over the abyssal ocean and 20m deep over
the continental shelf), matches well the magnitude and
locations of enhanced variability along the ACC and the
western boundary current along Argentina shown in
satellite estimates fromaltimetry (Fig. 2). TheEKE in the
model takes about 1.5 years to fully develop (not shown).
The mean model EKE for the 10-km resolution model is
2.5 times greater than in a test simulation of the same
model at 20-km resolution. While the current 10-km
model resolution is not eddy resolving on the Antarctic
continental shelves, it well represents the eddy variability
over the rest of the Southern Ocean.
The model monthly SST is compared (Fig. 3 and Fig. S1

in the online supplement) to three different estimates of
the ocean SST [WOA09, SODA, and the Estimating the
Circulation and Climate of the Ocean, phase II (ECCO2),
ocean reanalysis (Menemenlis et al. 2008)]. Root-mean-
square error (RMSE) over the entire model domain is
1.158C when compared to WOA09 (source of the model
lateral boundary conditions), 1.428C for SODA, and
1.468C for ECCO2. The error peaks in summer during the
period of the strongest meridional SST gradients but does
not grow over time. The model average salinity over the
continental shelves over the last 5 years only changes by
1024 yr21, which is well below the annual variation (stan-
dard deviation 5 1.89 3 1022) and any measured fresh-
ening over either the Ross Sea (33 1023 yr21; Jacobs and
Giulivi 2010) or northwesternWeddell Sea (53 1023 yr21;
Hellmer et al. 2011) continental shelves, thus indicating
that the processes that govern water mass formation on
the continental shelves are not significantly out of balance
in the simulation. The sea ice area over the entire model
domain matches extremely well with observations (Fig. 4)
and shows little sign of drift over time.Model sea ice extent
in February and August (Fig. 5) does not quite match
observations in a few areas (especially the summer extent
in the Ross Sea and the lack of summer sea ice along the
East Antarctic coast), but the mean patterns generally
compare well.
The total modeled annual average ice shelf basal melt

around the entire continent is 664Gt yr21 with a very
strong seasonal cycle (Fig. 6), but little year to year

(standard deviation 5 8Gt yr21) variability (likely be-
cause of the recycling of the atmospheric forcing every
year) after the first few years (Fig. 7). The model total
basal melt is low compared to observation-based esti-
mates that range from 750 to 1450Gt yr21 (Table 2). The

FIG. 2. (top) Model EKE (m2 s22) over the last 5 years of the
ERA-Int simulation. (bottom) EKE computed from AVISO sat-
ellite altimetry estimates of geostrophic velocity anomalies for
2010. Note the lack of altimetry data because of sea ice cover close
to Antarctica.
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• Can we devise a synthesis process that is more quantitative, 
transparent, and traceable (and “updatable”)? 

• Allow experts to study, challenge, change assumptions; examine 
impact on conclusions 

• Update with new (perhaps customized) studies and analysis 

• Reconcile disparate scenarios / assumptions 

• Modular information fusion decomposes problem into 
digestible questions about about system responses 
• What is the range of future global ocean warming?  How does 

basal melt depend on ocean warming?  How does ice 
disintegration depend on basal melt? 

• Formulate probabilistic, quantitative answers to each 
question; insert your own models / data/ judgment

Little, Urban, Oppenheimer (2013); 
Little, Oppenheimer, Urban (2013)

LETTERS NATURE CLIMATE CHANGE DOI: 10.1038/NCLIMATE1845
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Figure 3 | Sensitivity analysis. a,b, Discharge assumptions that are compatible with a 95th percentile Antarctic ice-sheet mass loss of 27 cm (a) and
40 cm (b). Shading indicates the collapse discharge (c) in PIG and B15R at which each upper bound is reached for a given annual collapse probability (pc)
and positive shift in the growth rate distribution in a set of marine-based basins. In a, the set of marine-based basins includes both East and West
Antarctica (1, 8–11, 13–14 and 17 in Table 1); in b, the set of basins includes only West Antarctica (1, 13–14 and 17 in Table 1). Warmer colours indicate
increasingly high discharge associated with collapse; these rates of ice loss should be viewed as progressively less plausible. Symbols in a are discussed in
the text; blue symbols invoke a sea-level contribution from collapse in PIG and B15R.

projections. The median SLR of �1.1 cm is in agreement with
projections of a modest mass gain by Antarctica if changes in
discharge are not expected7.

This prior probability distribution is updated by applying an ob-
servational constraint12 on the 1992–2010 cumulative continental
mass balance (orange lines in Fig. 1; see Methods). The updating
process weights mass-balance baselines and discharge growth rates
(see Supplementary Discussion, Figs S2 and S6), resulting in a
narrowed range of projections; the median and 95th percentile
projections of ice loss increase to 2.4 and 13.3 cm, respectively (blue
shading in Fig. 2a). This weighting has only a weak influence on
upper bounds, but the likelihood of a sea-level fall decreases to
less than 15%, primarily because negative continental mass-balance
baselines are strongly favoured.

In Fig. 2b, we compare our base-case projections with EISs
and SEMs. Although the probability of individual EISs is unclear,
their low to moderate Antarctic ice-loss projections fall within
or near our weighted base-case range. The upper bounds of EIS
analyses are substantially higher than our projections, driven by
their underlying assumption of collapse in PIG and/or B15R.
Comparison with SEM projections remains clouded by the
uncertain partition between SLR sources over their historical
calibration, and the widely varying upper bounds obtained from
different studies and when alternative data sets are used for
calibration. However, after we apply a partition to their 95th
percentile projections (see Methods), SEMs imply a higher upper-
bound Antarctic ice loss (⇠14–65 cm, denoted by red bars in
Fig. 2b) than our base case. With a 2:1 Greenland/Antarctica
partition, the mean upper bound across the analyses included in
Fig. 2 is approximately 27 cm. With a 1:1 partition, the mean upper
bound is approximately 40 cm.

At the coarse scale examined here, changes in three assumptions
lead to 95th percentile ice-loss projections that are compatible
with SEM and EIS upper bounds: positive shifts in discharge
growth rate distributions (including their form and range, and
the set of basins to which they apply)10; increased inter-basin
spatial correlation10; and abrupt, persistent, collapse. Each of
these assumptions embodies different prior beliefs about plausible
changes in ice dynamics and/or underlying physical processes, and
has substantially different implications on regional and continental
ice discharge (Supplementary Figs S4 and S5).

In Fig. 2b, we present probability distributions of Antarctica’s
mass balance associatedwith extreme changes in these assumptions.
First, we increase the correlation coefficient of discharge growth
rates across all ice-sheet basins to 1. Next, the discharge growth
rate distribution for all marine-based drainage basins in East and
West Antarctica (where sustained increases in discharge are more
physically justifiable)16,27,28 is shifted upwards by the historical
trend in PIG discharge (µPIG = 1.85% yr�1). We then increase
the probability of an abrupt change in PIG and B15R discharge
to 8⇥ SMB to 1: an immediate collapse. Although spatially
correlated discharge growth increases the spread of SLR projections,
its influence on upper bounds is limited relative to increases
in the likelihood of higher discharge in many drainage basins
and/or abrupt collapse.

To more clearly assess the dynamic implications of higher upper
bounds, we use this probabilistic framework to work backwards
towards sets of discharge assumptions that reach 27 and 40 cm SLR
equivalent ice loss with a 5% chance of exceedance (Fig. 3). Reach-
ing either upper bound without collapse requires high discharge
growth across many Antarctic drainage basins. To reach a 27 cm
upper bound (Fig. 3a), the prior distribution of discharge growth
rates in all marine-based basinsmust be increased by approximately
0.9% yr�1 (black circle), reflecting an expectation of discharge
growth half of that observed for PIG over more than 40% of the ice-
sheet area (with much higher growth rates possible in every basin).
Reducing the spatial extent of enhanced discharge implies higher
growth rates. For example, if discharge in East Antarctic basins is
assumed to be encompassed by our base-case assumptions, a 27 cm
upper bound requires a positive shift of 1.5% yr�1 in the growth
rate distribution of every West Antarctic basin, giving a 95–99.5%
chance of an increase in discharge (Supplementary Fig. S7).

Collapse in PIG and/or B15R decreases the requirement for
widespread discharge growth. Without changes in our base-case
assumptions in marine-based basins, a 27 cm upper bound for
Antarctica is achieved with a certain, instantaneous, increase of PIG
and B15R discharge to ⇠5⇥ SMB (blue circle), or a 1% annual
chance of collapse (equivalent to a 60% cumulative probability
before 2100) with a discharge ⇠8⇥ SMB (blue triangle). With a
1% annual collapse probability and discharge 5⇥ baseline SMB, this
upper bound is reached with an increase in discharge growth rates
of 0.4% yr�1 (blue star).
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The science of complex adaptive systems

"10

• Consider integrated resilience planning in a major coastal region 

• Sectors: power, water, transportation, communications, housing, industry… 

• The number of affected systems and possible decisions is vast 

• “Everything influences everything”: many tradeoffs and constraints 

• What does the “landscape” of resilience strategies look like?

RESILIENCE

CLIMATE ECO
NO

MI
CS

Distributed

Ecosystem
Civil	works services

generation

Time%evolving+ Interdependent+

Large+

Uncertain+

Pasqualini et al. (2017)



Some characteristics of planning in complex adaptive systems

"11

• Motivating example: regional U.S. power grid 

• Thousands of assets to manage 

• Networked system; cascading failures 

• Multiple interacting planning agencies (e.g. utilities) 

• Interconnected web of decisions (flood protection, 
capacity expansion, shift toward renewables / 
distributed generation, …) 

• Hazards and effects of decisions are global not local 

• To understand vulnerabilities, it is not sufficient to 
superimpose a map of impacts on a map of assets

Climate Impacts: Capturing Feedbacks and Adaptation in Coevolving Systems 20170614ER
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Figure 9: Vulnerability Analysis (VA) is performed for a Category 1 hurricane making landfall near
Delaware Bay (red-dot left image) to demonstrate the potential impact of erosion, both in terms of spa-
tial distribution and number of flooded assets. The results for a scenario with no sea-level rise (middle)
and 1m sea level rise (right) show the infrastructure damage for the original SLOSH bathymetry, and the
extreme erosion (EE) bathymetry. Specifically, some assets were damaged only with the original SLOSH
basin (red diamonds), while many assets further upstream were damaged only for the EE bathymetry (red
triangles).

tunately, the space of decisions defined by these options is exponentially large: for a network of
N nodes, there are 2N decisions about which assets to protect or redesign, each of which implies
further sub-decisions quantifying the actions to take (e.g. amount of additional generation needed).
It is computationally infeasible to explore this entire decision space for even a moderately small
network, and in realistic cases regional utilities may manage thousands of generators, substations,
and buses, as well as the transmission lines connecting them.

To address this problem, reserve co-investigators Pasqualini and Urban have been guiding a
CNLS-funded student project that is developing a new optimization algorithm that can efficiently
search the high-dimensional decision space, ruling out large regions as suboptimal and eliminat-
ing the need to consider them. The result is a sequence of network upgrade decisions that will
redesign the existing infrastructure network to be more resilient to flooding. The new optimiza-
tion algorithm falls into a class of stochastic chance-constrained, mixed-integer linear programs.
It inherently addresses uncertainty because it evaluates a network’s performance over an entire
probability distribution of future impacts to develop a single system redesign. This algorithm has
been tested successfully on a small synthetic network problem. In this project we applied this
algorithm to the subset of the Delaware Bay infrastructure network developed in (Section 2.3 to
explore adaptation options.

The optimization problem is defined as follows: at 10-year intervals over 50 years, a utility may
choose to perform a set of network upgrades. These upgrades include expanding the generation
capacity at existing sites, as well as hardening sites against flooding by erecting variable-height
barriers. The problem is to choose the optimal sequence of upgrades — where, when, and how
much to upgrade — where “optimal” is defined as “minimal cost”. In addition, the design must
satisfy a probabilistic (or “chance”) constraint on total reliability. For example, the system during
any 10-year period must have less than an X% probability of experiencing any power loss due to
flooded assets, where X is a user-specified risk tolerance. The probability of flooding in a 10-year
period is calculated by propagating future sea level rise uncertainties and statistical hurricane track
projections through the SLOSH hydrodynamic inundation model, as discussed in the vulnerability

PI: Moulton, John, D 11

Pasqualini et al. (2017)
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We can’t always determine all the “good” options in advance

"12

• Common approach: generate a set of impact scenarios; evaluate them 
against a stakeholder-specified “menu” of decision options 

• In complex interdependent systems, with cascading consequences, this 
does not always help us understand what to do! 
• Can’t easily anticipate the downstream consequences of actions 
• Decision space is exponentially large 
• May be impossible to pre-specify the set of options worth considering 

Strategies

Scenarios



Simulation and computational decision search for complex systems
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Optimizer proposes 
candidate designs

Adaptation strategies

Tree Search of
Network Design Space

Existing Network

Build 
Options

G

G

G

Build Water
Pipes

Simulators
compare designs’ 

resiliency

Build Power
Plants

• “SimCity” vulnerability analysis:  simulate regional natural-human-
engineered system over probability distribution of impacts 
• system dynamics, not just GIS hazard maps 

• Interdependent infrastructures, economics, ecosystems, … 
• Computationally-aided decision search to intelligently/efficiently search 

for strategies meeting design objectives, e.g.: 
• minimize cost 
• achieve required level of reliability 
• respect physical/engineering design constraints 
• respect geographic/political/stakeholder constraints 

• Decision support tools to identify potentially useful tradeoffs in complex 
decision problems that unaided humans might not find

Adaptation budget

System reliability (%)
Avoided climate damages ($)

Optimized

Manually-
designed

improved
resilience

With
adaptation

Without
adaptation



Complex network adaptation can find lower-cost reliable strategies
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Det-O with maximum scenario Sto-O with ! = 0.0

Total Costs: 46689 k$ Total Costs: 47446 k$

Expansion Costs: 26996 k$

Hardening Costs: 19693 k$ Hardening Costs: 15467 k$

Expansion Costs: 31999 k$
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other design heuristics

towards lower cost, 
greater reliability

Wang et al. (in review)

• Toy “Norfolk” power grid 

• Joint flood hardening and 
capacity expansion planning for 
storm surge and sea level rise 

• Find probabilistic reliability 
guarantees at minimum cost
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• Coastal planning will require increasingly sophisticated synthesis data products based on agile, 
state-of-the-art science 

• We can’t afford to “leave science on the table”:  translate diverse studies into usable predictions 

• Synthesis grand challenge:  Combining diverse collections of different, specialized models and 
data sets, each with their own biases and uncertainties 

• … a more formalized quantitative version of IPCC/NCA assessment science 
• Integrated adaptation challenges exist in a complex, difficult-to-understand space of 

consequences, goals, tradeoffs, and constraints 

• A more formalized decision science may be needed to solve these complex adaptation problems


