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§ Introduction: parametrization of ocean turbulence 
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➡  ODE/PDE discovery (Bolton & Zanna, Proceedings Climate Informatics, 
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 Preliminary Implementation in idealized models 

§ Conclusion & thoughts for the future of climate modelling



(from Malcolm Roberts)

Limitations of Current Computing



The Closure/Parametrization Problem (e.g., momentum)

Towards a data-driven mesoscale eddy parameterisation.                                 
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Effects of unresolved    
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mechanisms to 
approximate the bulk 
effect. 

PROS
-Clear physical interpretation.
-Computationally cheap to 
implement.

CONS
-Hard to capture all dynamical 
and thermodynamic effects.

Traditional route to eddy parameterisations
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E.g. Smagorinsky (1963), 
Leith (1968).
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Subgrid-scale

§ Consider physical mechanisms to 
approximate the bulk effect (e.g. Smagorinsky 

1963, Leith 1968)

§ Clear physical interpretation  

§ Computationally cheap to implement 

§ Parameter from theory, observations or tuning

§ Caveats:  often assumes down-gradient fluxes, difficult to capture all 

dynamical & thermodynamic flow-dependent + local/non-local effects 
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PROS

-Could capture physical processes that current 
parameterisations do not.
-Can represent highly nonlinear spatio-temporal 
variability. 

CONS

-Some methods are ‘black-boxes’ and hard to 
interpret.
-May not respect physical principles.

The data-driven approach

Data-driven algorithm to 
learn relationship between 

resolved fields and impacts of 
unresolved eddies.

Ling et al. (2016)
Maulik & San (2017)
Maulik et al. (2019)
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forcingCost 

function

§ Could capture physical processes that current parametrizations do not 

§ Can represent highly nonlinear spatio-temporal variability

§ Extract/diagnose the 

sub-grid tendency & its 

statistics            deduce 

something about the 

missing physics & its 

effect 
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§ Could capture physical processes that current parametrizations do not 

§ Can represent highly nonlinear spatio-temporal variability

§ Caveats: act as a black-box, may not work outside the training data, & 
may not respect physical/conservation laws

Turbulence: Ling et al., 2016; Wang et al., 2017 
Atm: Brenowitz & Bretherton, 2018; Gentine et al., 2018; Jiang et al., 2018; O'Gorman & Dwyer, 2018 
Ocean: Bolton & Zanna 2019
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Architecture of the Convolutional Neural Network 

Bolton & Zanna, JAMES, 2019

Towards a data-driven mesoscale eddy parameterisation.                                 
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Our previous work using CNNs

Resolved 
quantities

Eddy momentum 
forcing

● Trained convolutional neural networks in an idealised QG model*.
● Regional dynamics impacted accuracy.
● Generalised very well to higher Reynolds number regimes. 

(*Bolton & Zanna, 2019, “Applications of deep learning to ocean data inference…”, JAMES)

Convolutional 
neural network
for 



Non-local Generalisation

Bolton & Zanna, JAMES, 2019



Generalization to other dynamical regimes

Bolton & Zanna, JAMES, 2019



Summary of CNN-based Eddy Parametrization

§ Convolutional Neural Networks can be successfully trained to mimic eddy 

momentum forcing   

Bolton & Zanna, JAMES, 2019; Code on GitHub

§ Caveats ? 

➡ act as a black-box: extracting derivatives 

➡ may not work outside the training data: generalisation to different 
Reynolds numbers 

➡ may not respect physical laws: conservations can be imposed within 

the architecture 

➡ CNNs = a “good” basis for a new set of physics-aware machine learning-

derived sub-grid parametrizations (to complement traditional approaches)

 Yet, CNNs cannot be written as a “mathematical operator” which is well-

defined &can be studied  … 
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Data-driven discovery of PDEs

1. Spatio- 
temporal data
 
High-resolution 
models or 
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functions

Gradients and 
products of 
resolved 
velocities.

3. Iterative 
sparse 

regression

Repeatedly 
prune library of 
functions.

4. Data-driven 
equation

Remaining 
functions form  
the final result.
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equation

Remaining 
functions form  
the final result.

Sparse Bayesian learning, 
using relevance vector 
machines (RVMs).

Inspired by: Zhang & Lin (2018)
“Robust data-driven discovery of governing physical laws with error bars”

Sparse Bayesian learning, 
using relevance vector 
machines (RVM)



Data-driven PDE discovery

Towards a data-driven mesoscale eddy parameterisation.                                 
 

6 / 10

Data-driven discovery of PDEs

1. Spatio- 
temporal data
 
High-resolution 
models or 
observations

2. Library of 
functions

Gradients and 
products of 
resolved 
velocities.

3. Iterative 
sparse 

regression

Repeatedly 
prune library of 
functions.

4. Data-driven 
equation

Remaining 
functions form  
the final result.

Towards a data-driven mesoscale eddy parameterisation.                                 
 

6 / 10

Data-driven discovery of PDEs

1. Spatio- 
temporal data
 
High-resolution 
models or 
observations

2. Library of 
functions

Gradients and 
products of 
resolved 
velocities.

3. Iterative 
sparse 

regression

Repeatedly 
prune library of 
functions.
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Remaining 
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the final result.

An equation for S, the 
unresolved eddy momentum 
forcing, based on resolved 

variables!

An equation for S, the 
unresolved eddy 

momentum forcing, based 
on resolved variables



Eddy momentum forcing expressions 
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‘Discovered’ expression using data 
from barotropic MITgcm model:

Eddy momentum forcing expressions

● Captures ~54% of the variance.

● Extracted symmetric stress tensor 
with no a priori knowledge.

● Expression conserves global 
momentum and vorticity.

Contains the deformation 
based parameterisation of 
Anstey & Zanna (2017)

= vorticity       

= shearing deformation 

= stretching deformation

(scalar)

Discovered expression using data 
from barotropic MITgcm
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Resolution: 30km

No parameterisation

Resolution: 30km
+

Resolution: 3.75km

Implementation in barotropic model

More energetic flow fields

Must correct spurious loss of kinetic energy (Jansen & Held, 2014; Jansen et al., 2015; Zanna et al., 2017)
 Must correct spurious loss of kinetic energy (Mana & Zanna 2014; Jansen et al 

2015; Zanna et al 2017)

No parameterisation High resolution



Conclusions & Thoughts 

• Machine learning can reveal implicit (CNNs) or explicit (RVM) novel 

mesoscale eddy parameterisations for use in ocean & climate models  

• Can respect physical conservation law & generalise well to other regimes 

• Implementation: More energetic flow, correcting biases due to limited 

resolution & accuracy of numerical schemes  
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Some Current/Future Work + Thoughts 

• Long-term aim for model improvements:  

• a closed set of data-driven sub-grid parametrizations (in addition to 

current approaches) 

• Expand the search for closure using high-resolution & complex output 

from models & observations (e.g., new satellite missions or in situ data)  

• Error estimates (Bayesian) for different closures (model uncertainty)   

Opportunity: merging traditional thinking (physics constraints, stable 

implementation) with new avenues from data-driven algorithms (new 

parametrizations - not just parameters, stochastic physics, estimates of 

model errors)



Architecture of the Convolutional Neural Network 

Bolton & Zanna, JAMES, 2019



Eddy Energy

Bolton & Zanna, 2019; Zanna et al 2018, 2019



Higher Order Statistics
Truth Predicted



Extracting derivatives

Bolton & Zanna, JAMES, 2019

Confidential manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 10. The feature maps at each stage of the neural network CNNx1, for a synthetically-

generated input streamfunction. Panel (a) shows the synthetically-generated input, where a

radially-symmetric two-dimensional Gaussian function is used; the standard deviation is set to 60

km, in order to approximately match the length-scale of an eddy. Panels (b), (c), and (d) show

the resulting feature maps of convolution layers 1, 2, and 3 respectively; there is a feature map

for each application of filters to the previous feature maps (in the first convolution layer, there is

only a single feature map to act on, namely the input matrix). Panel (e) shows the final predic-

tion of the zonal sub-filter momentum forcing S̃x, using the synthetic Gaussian streamfunction as

the input.
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Figure 11. Correlation between the (momentum-form) parameterisation of Mana and Zanna

[2014], with coarse-grained sub-filter momentum forcing. The parameterisation was calculated

from the coarse-grained potential vorticity, which was calculated from the coarse-grained stream-

function
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Momentum Conservation 

Bolton & Zanna, JAMES, 2019

Confidential manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 7. Comparing spatial-averages of the neural network predictions with the truth. Pan-

els (a) and (b) compare the spatial-averages of the zonal and meridional components respectively;

the spatial-averages of S and S̃ indicate how the sub-filter momentum forcing impacts the global

momentum budget, i.e. the contributions to the spatially-averaged filtered-momentum tendency

Du/Dt. All diagnostics are calculated from the validation data.
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Confidential manuscript submitted to Journal of Advances in Modeling Earth Systems (JAMES)

Figure 9. Comparing spatial-averages of the neural network predictions with the truth.

Panels (a) and (b) compare the spatial-averages of the zonal and meridional components respec-

tively. The same as Figure 7, but comparing the neural networks of the momentum-conserving

approaches A, B, and C.
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Network Details

Bolton & Zanna, JAMES, 2019

Journal of Advances in Modeling Earth Systems 10.1029/2018MS001472

Table 1
Details on the Following: The Quasi-Geostrophic Ocean Model Parameters, the Data Sets Used
to Train the Neural Networks, the Architecture Parameters, and the Optimization Parameters

Quasi-Geostrophic Model Parameters
Domain size (grid points) 512 × 512
Domain length (L) 3,840 km
Resolution (!x) 7.5 km
Viscosity (") 75 m2/s
Rossby deformation radii (LRo) 40, 23 km
Velocity scale (

√
EKE) 0.21 m/s

Planetary vorticity (f0) 10−4 s−1

Rossby parameter (#) 2 × 10−11 m−1/s
Gravity (g) 9.8 m/s2

Reduced gravity (g′ ) 0.034, 0.018 m/s2

Bottom drag coefficient (r) 4 × 10−8 s−1

Wind stress amplitude ($0) 0.8 N/m2

Reference density (%0) 103 kg/m3

Neural Network Data Details
Data source Quasi-geostrophic ocean model
Input variable (feature) Filtered-stream function '̄
Output variables (targets) Subfilter momentum forcing Sx , Sy

Training region 1 Western boundary
Training region 2 Eastern boundary
Training region 3 Southern gyre
Number of training samples 5,800 (years 1–9)
Number of validation samples 5,600 (year 10)
Standardization method Zero mean, unit variance

Neural Network Architecture
Input size 40 × 40
Number of convolution layers 3
Number of filters for each convolution layer 16, 16*8, 8*8
Size of filter for each convolution layer 8 × 8, 4 × 4, 4 × 4
Filter stride for each convolution layer 2, 1, 1
Activation function for each convolution layer SELU, SELU, SELU
Max pooling kernel size 2
Output layer activation function None/Linear
Output size 40 × 40

Neural Network Training Parameters
Loss function Mean-square error
Optimizer Adam
Learning rate 0.001
Momentum 0.9
Batch size 16
Training epochs 200

BOLTON AND ZANNA 380



The Parametrization or Closure Problem

§ Including unresolved processes at low computational cost

 = fast/small-scale (eddy) fluctuations  

< grid-box size

   = slow- /large-scale fluctuations 
> grid-box size

( )

( )′�

American coast at Cape Hatteras and then reconnects with
the continental slope over the Southeast Newfoundland
Rise (the ridge that extends southeastwards from the tail of
the Grand Banks of Newfoundland near 50°W). The main
part of the flow then follows the continental slope
northwards to form the North Atlantic Current. The surface
signature of the anticyclonic Mann Eddy (Mann 1967) can
be seen in the Newfoundland Basin, just to the north of the
Southeast Newfoundland Rise (see Clarke et al. 1980 for a
description of the flow in this area). The New England
Seamounts are also evident, extending southeastwards and
crossing the path of the Gulf Stream between 65 and 60°W.
It should be noted that the northern recirculation gyre sits in
the region between the Gulf Stream path and the continental
slope to the north, extending roughly from the Grand Banks
of Newfoundland to the New England Seamounts (e.g. Hogg
and Stommel 1985; Hogg et al. 1986 and Qiu 1994). In the
case of the Kuroshio (lower panel), the separated jet is
dominated by the large meanders immediately to the east of
Japan and there is a notable tendency for the flow to diverge
as it approaches the Shatsky Rise (located between 155 and
160°E) as described, for example, in Qiu et al. (2008).

Next, we note that the horizontal momentum equations
appropriate to the ocean are given by
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where, the advection term is written using the horizontal
gradient operator, p is pressure, u is the horizonal velocity
(u and v are its zonal and meridional components,
respectively), and (Fx, Fy) is the frictional force, including
the wind forcing. (Note that the vertical advection of
momentum, which is not of interest here, has been neglected.
It should be noted that this term is small compared to the
horizontal advection terms when the flow is close to being in
geostrophic balance.) Taking a long time average gives
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Figure 2 shows plan views of the 13-year average of the
Reynolds stress co-variance u′v′ for the regions of both
the Gulf Stream and Kuroshio extensions together with the
mean sea surface height contours to indicate the mean flow
by geostrophy. For comparison, Fig. 3 reproduces Plate 8
from Ducet and Le Traon (2001). It should be noted that we
have used 13 years of data compared to the 5 years
available to Ducet and Le Traon (2001). Interestingly, the
principal features in the Reynolds stress covariance are
clearly the same in both figures, even if there are some
differences in detail. In the case of the Kuroshio, the
alternating positive and negative bands between Japan and

Fig. 1 The bottom topography
(colour shading with units of
metres) and the mean sea
surface height (contour interval
0.1 m; from Niiler et al. 2003) in
the regions of both the Gulf
Stream (upper panel) and
Kuroshio (lower panel)
extensions

Ocean Dynamics (2010) 60:617–628 619
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noise in y is Gaussian, then the probability density of hx̂i is also Gaussian with mean x̂

and covariance Sx̂.

Let’s go back to state estimate in the real world

Main Aim: Combine understanding of atmospheric and oceanic physics with obser-

vations to estimate the state of the system as accurately as possible + make predictions

In atmospheric remote sounding , the measurement operator K is determined by

radiative transfer; additional constraints can be used such as knowledge of optical depth

in a given range of wavenumbers

In the ocean, dynamics is often used to estimate the state. Scales of motions in the

ocean are typically much smaller than the atmosphere and observations are much sparser.

The problem of estimating the flow in the oceans interior is likely to be underdetermined,

the matrix K has more columns than rows.

The ocean circulation is governed by

• Newtons laws (Navier-Stokes equation)

@u

@t
+ (u ·r)u = gẑ� 1

⇢
rp� 2⌦⇥ u+ ⌫r2u+ Fext (1.14)

where v is the 3D velocity and Fext is the external wind forcing.

• Newtons laws (Navier-Stokes equation)
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⇢
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where v is the 3D velocity and Fext is the external wind forcing.

• Thermodynamics laws - heat and salt for a stratified fluid (tracer equations),
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Japan and there is a notable tendency for the flow to diverge
as it approaches the Shatsky Rise (located between 155 and
160°E) as described, for example, in Qiu et al. (2008).

Next, we note that the horizontal momentum equations
appropriate to the ocean are given by
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where, the advection term is written using the horizontal
gradient operator, p is pressure, u is the horizonal velocity
(u and v are its zonal and meridional components,
respectively), and (Fx, Fy) is the frictional force, including
the wind forcing. (Note that the vertical advection of
momentum, which is not of interest here, has been neglected.
It should be noted that this term is small compared to the
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Figure 2 shows plan views of the 13-year average of the
Reynolds stress co-variance u′v′ for the regions of both
the Gulf Stream and Kuroshio extensions together with the
mean sea surface height contours to indicate the mean flow
by geostrophy. For comparison, Fig. 3 reproduces Plate 8
from Ducet and Le Traon (2001). It should be noted that we
have used 13 years of data compared to the 5 years
available to Ducet and Le Traon (2001). Interestingly, the
principal features in the Reynolds stress covariance are
clearly the same in both figures, even if there are some
differences in detail. In the case of the Kuroshio, the
alternating positive and negative bands between Japan and

Fig. 1 The bottom topography
(colour shading with units of
metres) and the mean sea
surface height (contour interval
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the regions of both the Gulf
Stream (upper panel) and
Kuroshio (lower panel)
extensions
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American coast at Cape Hatteras and then reconnects with
the continental slope over the Southeast Newfoundland
Rise (the ridge that extends southeastwards from the tail of
the Grand Banks of Newfoundland near 50°W). The main
part of the flow then follows the continental slope
northwards to form the North Atlantic Current. The surface
signature of the anticyclonic Mann Eddy (Mann 1967) can
be seen in the Newfoundland Basin, just to the north of the
Southeast Newfoundland Rise (see Clarke et al. 1980 for a
description of the flow in this area). The New England
Seamounts are also evident, extending southeastwards and
crossing the path of the Gulf Stream between 65 and 60°W.
It should be noted that the northern recirculation gyre sits in
the region between the Gulf Stream path and the continental
slope to the north, extending roughly from the Grand Banks
of Newfoundland to the New England Seamounts (e.g. Hogg
and Stommel 1985; Hogg et al. 1986 and Qiu 1994). In the
case of the Kuroshio (lower panel), the separated jet is
dominated by the large meanders immediately to the east of
Japan and there is a notable tendency for the flow to diverge
as it approaches the Shatsky Rise (located between 155 and
160°E) as described, for example, in Qiu et al. (2008).
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gradient operator, p is pressure, u is the horizonal velocity
(u and v are its zonal and meridional components,
respectively), and (Fx, Fy) is the frictional force, including
the wind forcing. (Note that the vertical advection of
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American coast at Cape Hatteras and then reconnects with
the continental slope over the Southeast Newfoundland
Rise (the ridge that extends southeastwards from the tail of
the Grand Banks of Newfoundland near 50°W). The main
part of the flow then follows the continental slope
northwards to form the North Atlantic Current. The surface
signature of the anticyclonic Mann Eddy (Mann 1967) can
be seen in the Newfoundland Basin, just to the north of the
Southeast Newfoundland Rise (see Clarke et al. 1980 for a
description of the flow in this area). The New England
Seamounts are also evident, extending southeastwards and
crossing the path of the Gulf Stream between 65 and 60°W.
It should be noted that the northern recirculation gyre sits in
the region between the Gulf Stream path and the continental
slope to the north, extending roughly from the Grand Banks
of Newfoundland to the New England Seamounts (e.g. Hogg
and Stommel 1985; Hogg et al. 1986 and Qiu 1994). In the
case of the Kuroshio (lower panel), the separated jet is
dominated by the large meanders immediately to the east of
Japan and there is a notable tendency for the flow to diverge
as it approaches the Shatsky Rise (located between 155 and
160°E) as described, for example, in Qiu et al. (2008).

Next, we note that the horizontal momentum equations
appropriate to the ocean are given by
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where, the advection term is written using the horizontal
gradient operator, p is pressure, u is the horizonal velocity
(u and v are its zonal and meridional components,
respectively), and (Fx, Fy) is the frictional force, including
the wind forcing. (Note that the vertical advection of
momentum, which is not of interest here, has been neglected.
It should be noted that this term is small compared to the
horizontal advection terms when the flow is close to being in
geostrophic balance.) Taking a long time average gives
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S = Turbulence 
closure for sub-

grid eddy forcing

§ E.g., momentum (the same applies to heat, etc) 



Towards a data-driven mesoscale eddy parameterisation.                                 
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Eddy momentum forcing expressions

● Captures ~50% of the variance across all 15 
vertical levels.

● Baroclinic expression ~ barotropic expression   
+ additional terms.

● Symmetric stress tensor and conserves global 
momentum.

‘Discovered’ expression using data 
from baroclinic MITgcm model: = vorticity    

   
= shearing 
   deformation 

= stretching 
   deformation

Anstey & 
Zanna (2017)

(scalar)

Eddy momentum forcing expressions 

Discovered expression using data 
from barotropic MITgcm

Captures ~50% of the variance across 
all 15 vertical levels

Baroclinic expression = barotropic 
expression + additional terms

Symmetric stress tensor & conserves 
global momentum



High-resolution simulations & Coarse-Graining/Filtering 
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Eddy Permitting (30km)

•  Eddy sub-grid momentum forcing:

• Diagnostics in a baroclinic 3 layers quasi-geostrophic model  

tom.bolton@physics.ox.ac.uk

Input & output variables

Remove information at small spatial scales:

                       Gaussian filter

Input (feature): 

         Filtered streamfunction 

Output  (target):

          Eddy (sub-filter) 
                        momentum forcing 
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Part II: DeepEddy 

• Filtering of high-resolution variables:

tom.bolton@physics.ox.ac.uk

Input & output variables

Remove information at small spatial scales:

                       Gaussian filter

Input (feature): 

         Filtered streamfunction 

Output  (target):

          Eddy (sub-filter) 
                        momentum forcing 
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Part II: DeepEddy 

(Zanna et al, 2017)


