Deep Learning & Parametrization of Ocean Turbulence

Laure Zanna Dept of Physics, Oxford & (soon) Courant, NYU

Tom Bolton Dept of Physics, Oxford

Outline

- Introduction: parametrization of ocean turbulence
- Two data-driven deep learning tools for progress on parametrization
 - → Convolutional Neural Network (Bolton & Zanna, JAMES 2019)
 - ODE/PDE discovery (Bolton & Zanna, Proceedings Climate Informatics, Submitted)
 - Preliminary Implementation in idealized models

Conclusion & thoughts for the future of climate modelling

Limitations of Current Computing

The Closure/Parametrization Problem (e.g., momentum)

- Clear physical interpretation
- Computationally cheap to implement
- Parameter from theory, observations or tuning
- Caveats: often assumes down-gradient fluxes, difficult to capture all dynamical & thermodynamic flow-dependent + local/non-local effects

Data-driven Approach

- Could capture physical processes that current parametrizations do not
- Can represent highly nonlinear spatio-temporal variability

Data-driven Approach

Could capture physical processes that current parametrizations do not

- Can represent highly nonlinear spatio-temporal variability
- Caveats: act as a black-box, may not work outside the training data, & may not respect physical/conservation laws

Turbulence: Ling et al., 2016; Wang et al., 2017 Atm: Brenowitz & Bretherton, 2018; Gentine et al., 2018; Jiang et al., 2018; O'Gorman & Dwyer, 2018 Ocean: Bolton & Zanna 2019

Outline

- Introduction: parametrization of ocean turbulence
- Two data-driven deep learning tools for progress for parametrization
 - Convolutional Neural Network (Bolton & Zanna, JAMES 2019)
 - ODE/PDE discovery (Bolton & Zanna, Proceedings Climate Informatics, Submitted)
 - Preliminary Implementation in idealized models

Conclusion & thoughts for the future of climate modelling

Architecture of the Convolutional Neural Network

Neural network $\tilde{S}_x = f(\overline{\psi}, w)$, trained to minimize loss $L \propto (S_x - \tilde{S}_x)^2$.

Bolton & Zanna, JAMES, 2019

Non-local Generalisation

Generalization to other dynamical regimes

Bolton & Zanna, JAMES, 2019

Summary of CNN-based Eddy Parametrization

 Convolutional Neural Networks can be successfully trained to mimic eddy momentum forcing

<u>Caveats ?</u>

- ➡ act as a black-box: extracting derivatives
- may not work outside the training data: generalisation to different Reynolds numbers
- ➡ may not respect physical laws: conservations can be imposed within the architecture
- CNNs = a "good" basis for a new set of physics-aware machine learningderived sub-grid parametrizations (to complement traditional approaches)

Yet, CNNs cannot be written as a "mathematical operator" which is welldefined &can be studied ...

Bolton & Zanna, JAMES, 2019; Code on GitHub

Outline

- Introduction: parametrization of ocean turbulence
- Two data-driven deep learning tools for progress on parametrization
 - ➡ Convolutional Neural Network (Bolton & Zanna, JAMES 2019)
 - ➡ ODE/PDE discovery (Bolton & Zanna, Proceedings Climate Informatics, Submitted)
 - Preliminary Implementation in idealized models

Conclusion & thoughts for the future of climate modelling

High-resolution dada from idealised geometry MITgcm

barotropic & baroclinic simulations

$$\mathbf{S} = (\overline{\mathbf{u}} \cdot \overline{
abla}) \overline{\mathbf{u}} - \overline{(\mathbf{u} \cdot
abla) \mathbf{u}}$$

Divergence:
$$\sigma = \overline{\nabla} \cdot \overline{\mathbf{u}}$$

Vorticity: $\zeta = \overline{\nabla} \times \overline{\mathbf{u}}$
Shearing $D = \frac{\partial \overline{u}}{\partial y} + \frac{\partial \overline{v}}{\partial x}$
Stretching $\tilde{D} = \frac{\partial \overline{u}}{\partial x} - \frac{\partial \overline{v}}{\partial y}$

Enforce solution to be divergence of a flux: $f(\overline{u}, \overline{v}) = \overline{
abla} \cdot \mathbf{F}$

Sparse Bayesian learning,

Inspired by: Zhang & Lin (2018)

"Robust data-driven discovery of governing physical laws with error bars"

An equation for S, the unresolved eddy momentum forcing, based on resolved variables

$$\mathbf{S} = \overline{
abla} \cdot \mathbf{T}$$
 $\mathbf{T} = \mathbf{T}(\overline{u}, \overline{v})$

/ 4

Discovered expression using data from barotropic MITgcm

$$\mathbf{f}(\overline{u},\overline{v}) = \kappa \overline{
abla} \cdot egin{pmatrix} \zeta^2 - \zeta D & \zeta ilde{D} \ \zeta ilde{D} & \zeta^2 + \zeta D \end{pmatrix}$$

Discovered expression using data from barotropic MITgcm

$$\mathbf{f}(\overline{u},\overline{v}) = \kappa \overline{
abla} \cdot egin{pmatrix} \zeta^2 - \zeta D & \zeta ilde{D} \ \zeta ilde{D} & \zeta^2 + \zeta D \end{pmatrix} \$$

Discovered expression using data from barotropic MITgcm

$$\mathbf{f}(\overline{u},\overline{v}) = \kappa \overline{
abla} \cdot egin{pmatrix} \zeta^2 - \zeta D & \zeta ilde{D} \ \zeta ilde{D} & \zeta^2 + \zeta D \end{pmatrix}$$

Contains the deformation based parameterisation of Anstey & Zanna (2017)

 ∇

Implementation in barotropic model

Must correct spurious loss of kinetic energy (Mana & Zanna 2014; Jansen et al 2015; Zanna et al 2017)

• Machine learning can reveal implicit (CNNs) or explicit (RVM) novel mesoscale eddy parameterisations for use in ocean & climate models

- Can respect physical conservation law & generalise well to other regimes
- Implementation: More energetic flow, correcting biases due to limited resolution & accuracy of numerical schemes

Conclusions

• Machine learning can reveal implicit (CNNs) or explicit (RVM) novel mesoscale eddy parameterisations for use in ocean & climate models

- Can respect physical conservation law & generalise well to other regimes
- Implementation: More energetic flow, correcting biases due to limited resolution & accuracy of numerical schemes

Some Current/Future Work + Thoughts

• Long-term aim for model improvements:

- a closed set of data-driven sub-grid parametrizations (in addition to current approaches)
- Expand the search for closure using high-resolution & complex output from models & observations (e.g., new satellite missions or in situ data)
- Error estimates (Bayesian) for different closures (model uncertainty)

Opportunity: merging traditional thinking (physics constraints, stable implementation) with new avenues from data-driven algorithms (new parametrizations - not just parameters, stochastic physics, estimates of model errors)

Architecture of the Convolutional Neural Network

Neural network $\tilde{S}_x = f_x(\overline{\psi}, \mathbf{w}_1)$, trained to minimize loss $L \propto (S_x - \tilde{S}_x)^2$.

Bolton & Zanna, JAMES, 2019

Eddy Energy

Bolton & Zanna, 2019; Zanna et al 2018, 2019

Higher Order Statistics

х

Extracting derivatives

Bolton & Zanna, JAMES, 2019

Bolton & Zanna, JAMES, 2019

Network Details

Neural Network Data Details	
Data source	Quasi-geostrophic ocean model
Input variable (feature)	Filtered-stream function $\bar{\psi}$
Output variables (targets)	Subfilter momentum forcing S_x , S_y
Training region 1	Western boundary
Training region 2	Eastern boundary
Training region 3	Southern gyre
Number of training samples	5,800 (years 1–9)
Number of validation samples	5,600 (year 10)
Standardization method	Zero mean, unit variance
Neural Network Architecture	
Input size	40×40
Number of convolution layers	3
Number of filters for each convolution layer	16, 16*8, 8*8
Size of filter for each convolution layer	$8 \times 8, 4 \times 4, 4 \times 4$
Filter stride for each convolution layer	2, 1, 1
Activation function for each convolution layer	SELU, SELU, SELU
Max pooling kernel size	2
Output layer activation function	None/Linear
Output size	40×40
Neural Network Training Parameters	
Loss function	Mean-square error
Optimizer	Adam
Learning rate	0.001
Momentum	0.9
Batch size	16
Training epochs	200

Bolton & Zanna, JAMES, 2019

The Parametrization or Closure Problem

Including unresolved processes at low computational cost

in the slow- /large-scale fluctuations
 > grid-box size

()[']= fast/small-scale (eddy) fluctuations < grid-box size

• E.g., momentum (the same applies to heat, etc)

$$\frac{\partial \overline{u}}{\partial t} + \overline{u} \frac{\partial \overline{u}}{\partial x} + \overline{v} \frac{\partial \overline{u}}{\partial y} - f\overline{v} = -\frac{1}{\rho_0} \frac{\partial \overline{p}}{\partial x} + \frac{\overline{F}_x}{\rho_0} - \frac{\partial \overline{u'u'}}{\partial x} - \frac{\partial \overline{u'v'}}{\partial y}$$
$$\frac{\partial \overline{u}}{\partial t} + \overline{u} \frac{\partial \overline{u}}{\partial x} + \overline{v} \frac{\partial \overline{u}}{\partial y} - f\overline{v} = -\frac{1}{\rho_0} \frac{\partial \overline{p}}{\partial x} + \frac{\overline{F}_x}{\rho_0} + \begin{bmatrix} \mathbf{S} = \text{Turbulence} \\ \text{closure for sub-} \\ \text{grid eddy forcing} \end{bmatrix}$$

- Captures ~50% of the variance across all 15 vertical levels
- Baroclinic expression = barotropic expression + additional terms
- Symmetric stress tensor & conserves global momentum

High-resolution simulations & Coarse-Graining/Filtering

- Diagnostics in a baroclinic 3 layers quasi-geostrophic model (Zanna et al, 2017)
- Filtering of high-resolution variables:

$$\overline{(.)} \propto \int (.) e^{-rac{(\mathbf{x}-\mathbf{x}_0)^2}{2\sigma^2}} d\mathbf{x}$$

• Eddy sub-grid momentum forcing:

$$\mathbf{S} = (\overline{\mathbf{u}} \cdot
abla) \overline{\mathbf{u}} - \overline{(\mathbf{u} \cdot
abla) \mathbf{u}}$$