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What is optimal observing system design?

A range of computational tools to support science applications, 
where experimental / observational approaches are …

– too costly / slow / dangerous,
– or impossible

Problem statement: 
What is an optimal sampling strategy using given or hypothetical 
observational assets to best constrain a Quantity of Interest (QoI)?

– When a QoI is unobserved (different variable, different location, 
different time) – an ubiquitous problem!

– Or when the QoI is a forecast
– Or  model parameters



What are “Quantities of Interest” (QoI)

They are oceanic/atmospheric/climate metrics that we seek to quantify

Examples:
• Meridional volume/heat/freshwater transport across given section

– E.g.: AMOC; transports across Drake Passage, Fram Strait, ITF, …
• Regional ocean heat content (OHC), or its convergence/divergence

– E.g.: Greenland margin subsurface OHC, Nordic Seas OHC, …
• Climate indices, such as SST, Sea Level Anomaly, …

– E.g.: Nino3.4 index; US East Coast SLA; …
• Forecast skill: Arctic sea ice cover, …



Simulation-based strategies of observing system design

• Observing System Experiments (OSEs)
• Observing System Simulation Experiments (OSSEs)
• Forecast Sensitivity Observation Impacts (FSOI)
• Optimal Experimental Design (OED) / Quantitative Network Design (QND)

Most of these approaches take place in the context 
of data assimilation & prediction systems

Why?



OED in the context of data assimilation

A major goal of DA:

“Ideally, all observational data streams are interpreted 
simultaneously [for calibration] with the process 
information provided by the model, [which leads to] a 
consistent picture of the state of the Arctic system that 
balances all the observational constraints, taking into 
account the respective uncertainty ranges.”

Kaminski et al., The Cryosphere, 2015



Approaches
Some covered in OceanObs’19 CWP:
• Y. Fujii et al., Front. Mar. Sci. (2019)
• P. Heimbach et al., Front. Mar. Sci. (2019)
• C. Lee et al., Front. Mar. Sci. (2019)
• A. Moore et al., Front. Mar. Sci. (2019)
• G. Smith et al., Front. Mar. Sci. (2019)



Approaches:
Observing System Experiments (OSEs)

a.k.a. Observation Withholding/Denial Experiments
• A data assimilative run in which a certain observation-type is withheld 

from, or added to, the regularly assimilated data. 
• The impact of these withheld/added data is assessed by comparing the 

OSE with the control simulation in which only regular data are assimilated

Some drawbacks:
• The error reduction cannot be estimated accurately because the true 

state is not known. 
• Can only be used to evaluate preexisting, not future, observing systems



Approaches:
Observing System Simulation Experiments (OSSEs)

• Synthetic data, intended to mimic observations from the proposed 
observing system, are generated from a model simulation that is intended 
to represent the “true” ocean, thus called the “Nature Run”, with 
observation errors added based on prior information.

• Impact of synthetic data on forecast improvement is assessed from the 
error reduction in OSSEs when assimilating the new data

Some drawbacks:
• nature runs may not be good enough to realistically model the true ocean 

and the phenomena of interest
• results may be system-dependent, or results may only apply within the 

used OSSE system, but are not connected to the real world



Approaches:
Adjoint-based sensitivity methods

Uncover teleconnections, physical/dynamical relationships and causal 
chains that connect the observed quantities to the rest of the global ocean

1. Adjoint sensitivities
2. Observation sensitivities & FSOI
3. Hessian-based uncertainty quantification (UQ) 
4. Hessian-based optimal experimental design (OED)

Main point: 
They are related, but vary substantially in degree of sophistication and 
required computational needs. Level 3 rarely, and level 4 probably never
used so far in context of ocean/climate/NWP context.



Approaches:
Adjoint-based sensitivity methods
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Application in parameter & 
state estimation
(PSE)

Objective function is weighted least-
squares model-data misfit function



Approaches:
Adjoint-based sensitivity methods
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Application in
sensitivity analysis

Objective function is scalar-valued
Quantity of Interest (QoI), metric, …



Approaches:
Adjoint-based sensitivity methods
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How to combine?

I.e., how do the observations 
used to constrain the PSE aid 
to reduce the uncertainty in 
the QoI

?



Optimal Observing System Design



The uncertainty propagation & optimal design problem
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Formalize: 
• the uncertainty reduction of the 

PSE provided by observations
– Information provided by the 

observation
• How the reduced uncertainties 

in the PSE help to reduce the 
uncertainty in the QoI
– Information required by the 

QoI

Both are achieved with the adjoint!



Bayesian UQ in large-scale inverse problems based on (low-rank) Hessians

Overturning in the Subpolar 
North Atlantic Program (OSNAP)

http://www.o-snap.org
Lozier et al., BAMS (2017)

Lozier et al., Science (2019) N. Loose, PhD thesis (2019)



Observations: heat & volume transport across: 
– Iceland-Scotland Ridge
– RAPID array (26N)
– OSNAP West
– OSNAP East
– Davis Strait

Quantity of Interest (QoI):
subsurface heat content outside of
Sermilik Fjord & Helheim Glacier (Southeast Greenland)

Bayesian UQ in large-scale inverse problems based on (low-rank) Hessians

N. Loose, PhD thesis (2019)



Bayesian UQ in large-scale inverse problems based on (low-rank) Hessians

Prior-weighted QoI sensitivity
Information required by QoI

Prior-weighted misfit sensitivity
Information transmitted by obs.



Bayesian UQ in large-scale inverse problems based on (low-rank) Hessians

P
N.B.:
Almost everything is contained in 
that posterior error covariance



Bayesian UQ in large-scale inverse problems based on (low-rank) Hessians



How well does each observing system constrain the solution & relevant QoIs?



How well does each observing system constrain the solution & relevant QoIs?

•Hypothetical proxy potential of observation:
– Projection of information communicated (via model dynamics) by 

observation (J) onto information required by QoI (Q) via scalar product

•Effective proxy potential of observation:
– Multiplication of scalar product by a scaling factor d



How well does each observing system constrain the solution & relevant QoIs?

N. Loose, PhD thesis (2019)



How well does each observing system constrain the solution & relevant QoIs?

N. Loose, PhD thesis (2019)



How well does each observing system constrain the solution & relevant QoIs?

Hypothetical proxy potential
from scalar product / projection of all observation 
sensitivities with QoI sensitivities
• Accounts for propagation of all uncertainties
• Accounts for observational redundancy
• Accounts for all dynamically viable pathways 

between observed and QoI location

N. Loose, PhD thesis (2019)



How well does each observing system constrain the solution & relevant QoIs?

N. Loose, PhD thesis (2019)

Information 
transfer/damping
factor:
• Accounts for obs. 

Errors (rho)
• Accounts for prior 

knowledge / 
uncertainties (beta)

Ratio of observation to prior 
error uncertainty:
>> 1: large obs. uncertainty,

i.e., small reduction
<< 1: small obs. uncertainty,

i.e., large reduction



Effective proxy 
potential
• Accounts for 

everything

How well does each observing system constrain the solution & relevant QoIs?

N. Loose, PhD thesis (2019)



Effective proxy potential:
• Arises for such observational assets that share the same dynamical 

adjustment pathways as those of QoIs
• Arises if the information contained in the observation is not masked too 

strongly by observational noise/error

In Practice: 
• Eigen-decomposition of the misfit Hessian is key

– Leading eigenvectors/values point to most potent obs. constraints, 
i.e., data-informed directions in control space

– The eigen-decomposition is also a formal framework for letting the 
dynamics determine the effective low-order subspace/approximation!

How well does each observing system constrain the solution & relevant QoIs?



Kaminski et al., The Cryosphere (2015, 2018)

Similar approach, but using a-priori
control space reduction via
“large region approach”

Obs.: 
Operation IceBridge retrievals
of sea ice area, ice & snow thicknesses,
averaged over “large regions”
QoIs:
Forecasts of sea ice area & thickness in 
Chukchi & Beaufort Seas



Kaminski et al., The Cryosphere (2015, 2018)

Observation 
sensitivities

(information 
communicated
by observations)



Kaminski et al., The Cryosphere (2015, 2018)

QoI
sensitivities

(information 
required by
Quantity of Interest)



Kaminski et al., The Cryosphere (2015, 2018)

Uncertainty Reduction:

Projects observation uncertainties
onto QoI uncertainties

A simplified statement on how to 
evaluate posterior error covariance 
by means of inverse Hessian 

Find data-informed subspaces

Find data complementarity vs. 
redundancy (not just “a lot of data”)



Conclusions

Adjoint & Hessian-based UQ and observing system design offers:
• Dynamics-based assessment of existing or hypothetical obs. systems
• Links observational assets to a QoI that is …

– …unobservable or unobserved,
– …a different type of quantity/variable than measured quantity,
– …spatially and/or temporally non-collocated

• Quantifies the degree to which information required by QoI is 
transmitted by the information ”transmitted” by the observation

• Quantifies observational complementarity vs. redundancy
• Accounts for high-dimensional, multi-variable uncertainty spaces



Conclusions

Adjoint & Hessian-based UQ and observing system design offers:
• Framework does not require actual measurement values(!)

– Can therefore distinguish between hypothetical and effective (noise-

masked) proxy potential of observations

Note that…
– These frameworks are still being developed for real-world applications 

(e.g., ocean / climate models), i.e. ongoing research & development

– These frameworks require:

• advanced computational algorithms

• significant computational resources

• time to fully explore …



Conclusions

• A range of tools available for optimal observing system design
– Varying degree of sophistication & flexibility
– Many remain little (or non) explored in real-world applications !

• Given the cost associated with observing system, improving capabilities 
of quantitative/optimal OSD seems well worth

• No claim is made that OSD will replace human judgement !
– It is a quantitative tool in a portfolio of decision-making tools

• Ideally a sustained, hand-in-hand iterative process of improving
– observing systems
– models (which are required for forecast)
– DA systems used for calibration, estimation, forecasting, OSD, …





Some useful references

OceanObs’19:
• Fujii et al., Front. Mar. Sci. (2019)

• Heimbach et al., Front. Mar. Sci. (2019)

• Lee et al., Front. Mar. Sci. (2019)

• Moore et al., Front. Mar. Sci. (2019)

• Smith et al., Front. Mar. Sci. (2019)

Others:
• Kaminski et al., The Cryosphere (2015, 2018)

• Atlas & Hoffman, Bull. Amer. Met. Soc. (2014)

• Kalmikov & Heimbach, SIAM J. Sci. Comput. (2014, 2018)

• Alexanderian et al., SIAM J. Sci. Comput. (2016)

• …

Loose, Ph.D. thesis (2019)


