
Time (hour) Current (B) No Current (A) Current – No Current 
(B-A)

Percentage 
Increase (%)

1 4064 3966 98 2.5

2 8294 7790 504 6.5

3 11856 10808 1048 9.7

4 16287 14788 1499 10.1

5 20477 18529 1948 10.5

6 24339 21963 2376 10.8

Difference of PV Averaged along X direction (Scheme B – A)

Hovmöller Diagrams of Horizontally Averaged PV
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PV Flux at Surface (Scheme B – Scheme A)

Wind Stress Curl & Surface Current Vorticity (Scheme B)

Wind Stress Curl & Crosswind SST Gradient (Scheme A & B)

Model Setup

Goals
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• Positive linear relationship between wind stress curl and crosswind sea surface 

temperature (SST) gradient has been found by Chelton et al. (2004) on satellite 

observations (25-km resolution).

• Stronger wind stress over warm water is argued to be the mechanism.  

• In the submesoscale regime, SST gradients are much stronger than those in the 

mesoscale and larger scale regimes. And surface current vorticity is significantly 

robust in submesoscale regime. 

𝑊"#"$% =
1
𝜌
∇×

𝜏
𝑓 + 𝜁

(Stern, 1965)

• Negative potential vorticity (PV) injection from the ocean surface is crucial for 

triggering instability in the upper ocean layer.

• Determine (quantitively) if wind stress field is significantly influenced by 

submesoscale surface features (SST gradient and current vorticity)? 

• Assess (quantitively) the effect of including surface current in air-sea turbulent 

flux on the PV surface flux and vertical transports.

• Ocean: MITgcm; Atmospheric Boundary Layer: CheapAML

• Resolution: 10 m horizontal; 2 m vertical. 
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• Comparison between 24-hour experiments using Scheme A and Scheme B
Scheme A 

(Current is NOT considered)
Scheme B

(Current is considered)

Scheme B – Scheme A
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Scheme B (comparing to Scheme A):

• Less negative PV injection

• More negative PV is transported into 

deeper layers
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• Comparison of horizontally averaged tracer profiles at 2nd , 4th , 6th hour (dashed: A; solid: B). 

In Scheme B (compare to Scheme A):

• More passive tracer is transported 

into layers beneath 50 m depth.

• Table: Quantitative assessment of passive tracer transported into layers beneath 50 m depth.

• Difference of Tracer Averaged along X direction (Scheme B – Scheme A)
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