

Surface Current Influence on Potential Vorticity Flux in Submesoscale Regime

¹ Florida State University, Center for Ocean-Atmospheric Prediction Studies, Tallahassee, FL, United States. ² Florida State University, Department of Earth, Ocean and Atmospheric Science, Tallahassee, FL, United States. ³ Florida Agricultural and Mechanical University, School of Environment, Tallahassee, FL, United States.

observations (25-km resolution).

robust in submesoscale regime.

$$W_{total} = \frac{1}{\rho} \nabla \times \left(\frac{\vec{\tau}}{f+\zeta}\right)$$
 (Stern, 1965)

triggering instability in the upper ocean layer.

- submesoscale surface features (SST gradient and current vorticity)?
- flux on the PV surface flux and vertical transports.

Xu Chen^{1,2}, William Dewar², Eric Chassignet^{1,2}, Mark Bourassa^{1,2}, Steve Morey^{1,3}

In Scheme B (compare to Scheme A):

• More passive tracer is transported into layers beneath 50 m depth.

rent – No Current (B-A)	Percentage Increase (%)
98	2.5
504	6.5
1048	9.7
1499	10.1
1948	10.5
2376	10.8