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disappears from the model instead of being converted into KE. Table1: Summary of the numerical experiments conducted in this studly. St deBoyer
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- New parameterizations have been developed recently with the goal of re-injecting M 1120 0
. . . ~ . mixed layer depth (MLD, m
the missing KE |.nto the system via a backscatter approach (Jansen et al., 2014, . Descrlptlon g oo g v in the su}t/)polarpNor(th )
Bachman, 2019;). Control without backscatter ; 05 “° Atlantic for the experiments
 Qur goal is to evaluate how the parameterization proposed by Bachman (2019), . . 320 20  shown in Table 1.
referred to as GM+E, affects climate-relevant oceanic metrics in coupled ocean/ C1 with backscatter C=1 in eq(3) - -y o A o
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C5 with backscatter C=5 in €] (3) Also shown is the winter MLD from the Boyer Montegut et al. (2004) climatology.
The GM+E parameterization C10 with backscatter C=10 in eq(3)
In a nutshell, this scheme exploits the energy transfer implied by GM to inform the Dra ke passage tranSpO rt and AMOC
backscatter approach. Full details in Bachman (2019). Mean near-su rface currents (m 5'1)
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Also shown is the near-surface velocity magnitude drifter climatology from Laurindo et S u mm a ry
GM IBartocl:)I-ill?ic al., 2017.
B e Successfully implemented GM+E in an ocean model used for climate
R - . . projections (MOM®6) and performed a set of global forced simulations with
@< Unresolved || Resolved M l Change In kl netlc energy different levels of energy re-injection (see Table 1).
ssipation <@ u I v v v Bottom Drag e GM+E has a significant effect in many climate-relevant oceanic metrics and can
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be a powerful “knob” when tuning climate models.
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e Empirically, there seems to be a threshold level of energy injection where the

Fig. 1: Schematic of the energy cycle in nature, following theoretical studies, and in a :: :: o flow develops “new” features such as standing meanders and zonal jets rather
coarse-resolution ocean general circulation model. From Bachman (2019). E - 5 18 - — gcl)ntrol —_ gio than merely amplifying the existing flow patterns from the control simulation.
_ _ _ energy re-injection 2 o5, v\/////\\\ 5 161 This has potentially negative effects which we are still exploring.
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R o — e Still a lot to be learned!
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