Examining Drifter Velocity Measurements for Use in Constraining Climate Models

Mengnan Zhao & Rui M. Ponte / Atmospheric and Environmental Research, Inc.

I. Scientific Questions and Approach

- How good are surface circulations simulated in climate models?
- Can climate models be improved by incorporating surface drifter velocity measurements?
- Use surface circulation in latest state estimate from ECCO (Estimating the Circulation and Climate of the Ocean) as an example.
- Estimate data errors, including both instrumental errors and representation errors (signals in the data that cannot be represented by model physics and resolution)
- to weight the model-data misfits on timescales of daily, monthly and climatology.

II. Data

Global Drifter Program (GDP)

- Pseudo-Eulerian horizontal velocities at
 ~15 m derived from drifter locations
- Wind induced non-oceanic velocity and high frequency signals (e.g., tides and inertial motions) removed

Estimating the Circulation and Climate of the Ocean (ECCO)

• ECCO describes the ocean state by fitting a general circulation model

(MITgcm) to observations in a weighted least square sense.

Ocean Surface Current Analysis Real-time (OSCAR)

 OSCAR represents altimetry-derived geostrophic and wind-stress-estimated Ekman components.

product	depth	temporal scales	spatial scales
GDP	~15 m	6 h	a few km
ECCO	~15 m	1 day	~20 km to ~100 km
OSCAR	upper 30 m	5 day	1/3 degree

III. Surface Currents in ECCO and GDP

- Daily GDP and ECCO velocities: processed to same temporal and spatial coverage.
- Monthly velocities and climatology (1992-2017): averaged available daily velocities.

↑ Standard deviation of daily zonal velocities [m/s] from GDP and ECCO over 1992-2017 (top) and climatology over the same period (bottom).

IV. GDP Instrumental and Representation Errors

Daily and Monthly Timescales:

Measured velocity D and modeled velocity M consists of true value s and errors ε_D and ε_M : $D = s + \varepsilon_D$ and $M = s + \varepsilon_M$. Data error variances $var(\varepsilon_D)$ can be derived as

$$var(\varepsilon_D) = var(D) - cov(D, M) \tag{1}$$

where var and cov are variances and covariances. Equation (1) holds if $cov(s, \varepsilon_D)$, $cov(s, \varepsilon_M)$ and $cov(\varepsilon_D, \varepsilon_M)$ can be neglected. To avoid unphysically large estimates of $var(\varepsilon_D)$ from (1), we arbitrarily cap $var(\varepsilon_D) \le 90\% \ var(D-M)$.

Climatology 1992-2017:

Data errors are estimated to be the absolute value of difference between GDP and OSCAR climatologies.

 \uparrow GDP instrumental and representation errors ε_D [m/s] on daily timescale (left) and climatology 1992-2017 (right).

V. Constraining ECCO Velocity Field

The model-data misfits against estimated data errors (i.e., cost) are used to examine whether constraining ECCO velocity using drifter data could be important. Cost is calculated as:

$$cost = var(D - M) / var(\varepsilon_D)$$
 (2)

Regions with cost values >1 are where ECCO velocities deviate from the measurements by more than expected from considering instrumental and representation errors.

↑ Cost for daily zonal velocity field (left) and climatology (right).

VI. Summary

- ECCO surface currents tend to be weaker and less variable than GDP measurements.
- Constraining ECCO solutions to GDP data may have an impact on mean surface velocity estimates, but not so much on daily and monthly values, except mostly in equatorial regions.