How do subsurface Tropical Instability Waves in the Atlantic Ocean influence vertical mixing?

Mia Sophie Specht, Johann Jungclaus, Jürgen Bader

Max-Planck-Institut für Meteorologie, Hamburg, Germany, mia-sophie.specht@mpimet.mpg.de

Subsurface Tropical Instability Waves (subTIWs) can cause a vertical two-layer structure above the thermocline with periodically increasing and decreasing shear, which may impact vertical mixing.

Analysis of subTIWs using high-resolution output from the global and comprehensive model ICON-O (Korn, 2017)

Ocean only setup

ICON-O

- 10 km horizontal resolution
- Forced with hourly ERA5 data from 2000 to 2018

- Global and comprehensive
- 128 vertical levels
- Analysis of daily mean values

Identifying subTIW periods and depth dependence using Power Spectral Density (PSD)

Period of strongest subTIW energy at 23°W/0°N : 20 – 24 days Surface TIW periods: 15 – 60 days 15 – 40 days $23^{\circ}W/2^{\circ}N$: 26 - 34 days subTIW periods: $23^{\circ}W/2^{\circ}S: 26 - 34 \text{ days}$ Average depth of strongest subTIW energy: 64 m

Difference in forcing of surface TIWs and subTIWs leads to different spatial patterns

TIWs and subTIWs are both generated mainly through **barotropic instabilities**

Ģ	Generation	Surface	Subsurface
	ncreased shear	Of the mean surface circulation	At both flanks of the Equatorial
2		north of the Equator	Undercurrent (EUC)
⁴ F	orcing:	Intensification of southeasterly	Intensification of EUC in boreal
8		trade winds	summer

Fig. 1: EOF modes of bandpass filtered (15 – 60 days) temperature at the surface (left) and in subTIW layer (right). Values are normalized and non-dimensional.

> TIWs and subTIWs are generated independently of each other

> Due to the temporally coinciding forcing, both wave types occur at similar times

II. subTIWs can cause a vertical two-layer structure

Two-layer structure with periodically increasing and decreasing vertical shear | Velocity amplitudes: 2 m/s | Onset: May/June | Maximum: August/September

Fig. 2: Bandpass filtered velocity u', v' (top), vertical shear of filtered zonal velocity (middle) and vertical shear of filtered meridional velocity (bottom) during TIW season 2010 at 23° W/0° N (left), 23° W/2° N (middle) and 23° W/2° S (right). Red line in the lower panels indicates the thermocline (20° C isotherm). Vertical two-layer shear structure is indicated in the middle panel.

III. Differences in subTIW characteristics off and on the Equator						
Characteristic	23°W/0°N	23°W/2°N	23°W/2°S			
 subTIWs expressed by oscillation of 	Zonal velocity	Meridional velocity	Zonal velocity			
 ~ 60 % of TIW induced shear related to 	Zonal velocity	Meridional velocity	Zonal velocity			

- ~ 60 % of TIW induced shear related to \bullet
- Contribution of shear in lower layer relative to vertically averaged TIW induced shear $\sim 1/3$ above the thermocline

Open questions

- How do surface intensified TIWs and subTIWs interact?
- How to quantify the impact of subTIWs on vertical mixing relative to the impact of TIWs?
- How do the model results compare to observations in the tropical Atlantic?

References

Korn, Peter. "Formulation of an unstructured grid model for global ocean dynamics." Journal of Computational Physics 339 (2017): 525-552.

~ 2/3

~ 2/3

International Max Planck Research School on Earth System Modelling