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Introduction : Large scale interactions and wind divergence

4 year average of high-pass
filtered wind stress curl

From Chelton et al. (2004).

• Large scale interactions [spatial scales of
O(100km)].

• Correlation between divergence/curl of wind
stress and SST gradient.
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Introduction : Large scale interactions and wind divergence

Large eddy simulation after 36h

From Ayet and Redelsperger, QJRMS (2019)
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Introduction : Large scale interactions and wind divergence

Downward momentum mixing : ∇ · τ ∝ Ug .∇SST
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Introduction : Large scale interactions and wind divergence

Pressure adjustment mechanism : ∇ ·U ∝ ∆SST
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Introduction : Instantaneous features (I)

• Radiance contrast from
the Multi-angle Imaging
SpectroRadiometer
(onboard Terra)

• Sensitive to modulation
of the steppness of
O(1m) waves, which are
sensitive both to current
divergence and wind
stress variations on
short timescales (30’).
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Introduction : Instantaneous features (II)

• Wind blows from cold to warm (black arrow)
• Current divergence associated with the sharp front impacts wave

steepness
• Near-surface wind streaks downwind of the dashed boundary.
• Micro-scale convection .

See the classification of Wang et al. (Geoscience Data Journal, 2019)

Boundary layer turbulence : O(10km) ; SST front : O(1km).

See also Redelsperger et al. (QJRMS, 2019) for recent LES over the sharp Ushant

front
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The model (I) : A simple toy problem
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The model (II) : momentum balance

Momentum balance

∂z [K∂zU]︸ ︷︷ ︸
turbulent stress

− ifU︸︷︷︸
coriolis

=
g

θ0
[(z − h)(∂xθ + i∂yθ)︸ ︷︷ ︸

temp. gradient

−(∂xh + i∂yh)θ]︸ ︷︷ ︸
MABL height gradient

• Advection is neglected : small Rossby number
• Simplistic bottom boundary conditions (no waves !)

U(x , h) = 0 and U(x , 0) = −Ug .

• Parabolic diffusion coefficient

K (x , z) = A(x) + B(x)

[
z − h(x)

2

]
+ C (x)

[
z − h(x)

2

]2

.

• Thermodynamical (h, θ) and turbulent (A, B, C ) quantities are
parameters of the model

• Analytical solution
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Comparison to a numerical simulation (I)

Large eddy-simulation : Ug = 5 m s−1, ∆x = 1 km, two-dimensional
f-plane (45◦N). 15/35



Comparison to a numerical simulation (II)
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Comparison to a numerical simulation (III)
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Insights from the analytical solution : wind divergence

Depth-integrated wind divergence

∇ ·U = αL∆θ︸ ︷︷ ︸
P. adjustment

+αDUg .∇θ︸ ︷︷ ︸
mom. mixing

+((((
(((αC (Ug ×∇θ) +���

��
αG (∇θ)2
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Insights from the analytical solution : wind divergence

Depth-integrated wind divergence

∇ ·U = αL∆θ + αDUg .∇θ +((((
(((αC (Ug ×∇θ) +���

��
αG (∇θ)2
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Insights from the analytical solution : wind divergence

Depth-integrated wind divergence

∇ ·U = αL∆θ︸ ︷︷ ︸
P. adjustment

+αDUg .∇θ︸ ︷︷ ︸
mom. mixing

+((((
(((αC (Ug ×∇θ) +���

��
αG (∇θ)2

The analytical model further reveals that the wind divergence can be
decomposed into a

• Scale-dependent part : ∆θ ∝ L−2 ; ∇θ ∝ L−1, with L the scale of
the front

• Turbulence-dependent modulation : αL, αD ∝ F (K , ∂θK )

• K : turbulence intensity
• ∂θK : adjustment of turbulence to SST variations
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Insights from the analytical solution : wind divergence

∇ ·U = αL∆θ + αDUg .∇θ
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Insights from the analytical solution : wind divergence

∇ ·U = αL∆θ + αDUg .∇θ
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Insights from the analytical solution (II) : wind divergence

Different upwind turbulent conditions can lead to different
responses : an illustration for different time and space scales
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What about waves ? The chicken or the egg ?

Modulation of O(1m) waves, associated to surface stress

• Current divergence associated with the sharp front impacts wave
steepness

• Near-surface wind streaks downwind of the dashed boundary.
• Micro-scale convection .

Are those wave variations associated to changes in the wind, in
waves or both ?

How should wind-wave interactions be included in the picture ? 25/35



What about waves ? Wind-wave coupling (I)

Change the bottom boundary condition : τ = ρCDU
2
10

waves

no waves

{waves?

Measurements : Edson et al. (2013) ; Model : Kudryavtsev et al. (2014)

Surface stress is increased by short waves, with uncertainties
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What about waves ? Wind-wave coupling (II)

Short waves (<1m) : Depending on wave scale, the coupling acts
at different heights and intensities

AFS : air-flow separation (wave breaking) ; NSS : non-separated sheltering (Belcher

and Hunt 1993) ; Matched layer : Miles’ 1957 mechanism.
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What about waves ? Wind-wave coupling (III)

sv =  z

sh = z fa( )

w(x) w(x+2 sh) w(x)

2 Hr(k)

z

a) b)
U U

0 /2

Long waves (∼10m) : could impact atmospheric turbulent
structures by modulation of shorter waves.

From Ayet et al. (BLM, 2019), see also Kudryavtsev and Chapron (2016)
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What about waves ? summary

the bottom boundary condition : τ = ρCDU
2
10

waves

no waves

{waves?

Surface stress is coupled to waves at scales < (n × 10) m

Sensitive to atmospheric turbulent conditions and currents 29/35
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Conclusion

Simple case of a cold-to-warm front, at multiple scales

• Analytical model for the large scales, with low rossby number
• Instantaneous features reveal changes in turbulence associated to

sharp fronts
• This changes are associated with wind-wave (and current) couplings,

with uncertainties in their modelling
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Conclusion

Simple case of a cold-to-warm front, at multiple scales

• Analytical model for the large scales, with low rossby number
• A parabolic diffusion coefficient whose intensity is not related to the

MABL height is essential to reproduce the numerical simulation
• The analytical model reveals different responses of wind divergence

to SST field derivatives, that depend on the dynamical regime and
scale.
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Conclusion : multiscale wind-wave-current interactions

Non-exhaustive summary of wind-wave-current interactions occuring for
this toy problem.
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Insights from the analytical solution : dynamical regimes

Dimensionless momentum balance

Ek ∂z′(K ′∂z′U ′)︸ ︷︷ ︸
turbulent stress

− iU ′︸︷︷︸
coriolis

= Pc (z ′ − 1)(∂x′ + i∂y ′)θ′︸ ︷︷ ︸
pressure

Ek =
mixing
coriolis

=
l2e
h2 ∝

K

h2

where le is the height of the Ekman Layer, K averaged turbulence
diffusion.

Pc =
pressure
coriolis

∝ h

L

∆θ

Ug

where L is the horizontal extension of the SST front, ∆θ the relative
temperature (∼ SST) difference across the front.



Insights from the analytical solution : dynamical regimes

Ekman number

Ek =
turbulence
coriolis

=
l 2e
h2

=
2π2K

h2f

where le the Ekman layer height → Ek= 1 for an Ekman layer model
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