A big idea from OceanObs'19: Formation of an Integrated Surface Ocean Observing System (ISOOS)

Recommendations from >13 Community Papers and >300 expert Authors

Cronin, et al. (2019) "Air-sea fluxes with a focus on heat and momentum"

Wanninkhof, et al. (2019) "A Surface Ocean CO₂ Reference Network, SOCONET and Associated Marine Boundary Layer CO₂ Measurements"

Centurioni, et al. (2019) "Multidisciplinary Global In-Situ Observations of Essential Climate and Ocean Variables at the Air-Sea Interface In Support of Climate Variability and Change Studies and to Improve Weather Forecasting, Pollution, Hazard and Maritime Safety Assessments"

Ardhuin, et al. (2019) "Observing sea states"

Ardhuin, et al. (2019) "SKIM, a candidate satellite mission exploring global ocean currents and waves"

Bourassa, M. A. et al. (2019): "Remotely Sensed Winds and Wind Stresses for Marine Forecasting and Ocean Modeling"

Gommenginger, et al. (2019) "SEASTAR: a mission to study ocean submesoscale dynamics and small-scale atmosphereocean processes in coastal, shelf and polar seas"

Kent, et al. (2019) "Observing requirements for long-term climate records at the ocean surface"

O'Carroll, et al. (2019) "Observational Needs of Sea Surface Temperature"

Smith, et al. (2019) "Ship-Based Contributions to Global Ocean, Weather, and Climate Observing Systems"

Steinhoff, et al. (2019) "Constraining the oceanic uptake and fluxes of greenhouse gases by building an ocean network of certified stations: the ICOS Oceans Network"

Swart, et al. (2019): Constraining Southern Ocean Air-Sea-Ice Fluxes Through Enhanced Observations"

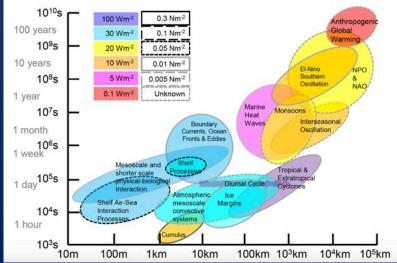
Villas Bôas, et al (2019): "Integrated Observations of Global Surface Winds, Currents, and Waves: Requirements and Challenges for the Next Decade"

To predict weather and climate influenced by ocean, air-sea heat fluxes must be resolved

Warm Episode Relationships

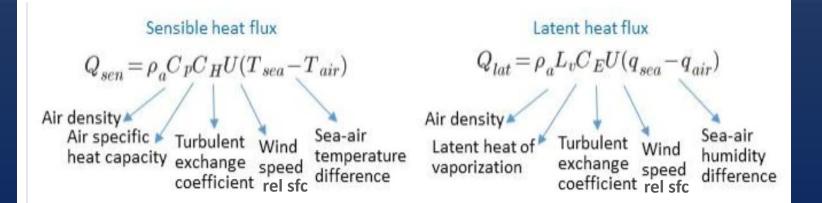
Goals for 2030:

3-hourly 25-km Gridded Air-Sea fluxes with "breakthrough" 1-day random uncertainties of: $15 \text{ W m}^{-2} (5\%) \& 0.01 \text{ N m}^{-2} (5\%)$


and Biases less than: 5 W m⁻² & 0.005 N m⁻²

Aspirational goal:

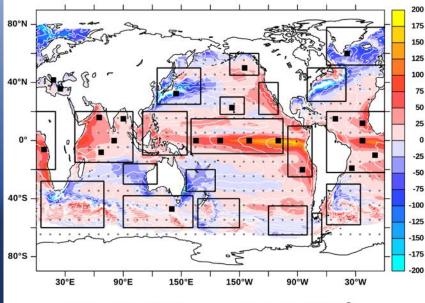
"Breakthrough" accuracy for 1-hrly at 10km gridded fluxes.


Flux Accuracies and Processes


To predict weather and climate influenced by ocean, air-sea heat fluxes must be resolved

 $Q_{net} = Q_{SW} - Q_{LW} - Q_{lat} - Q_{sen}$

Need more than 10 essential ocean & climate variables to compute air-sea heat fluxes.



Flux EOV/E	CV 2018	2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030	
Bulk S	ST Partially	y met Adequate	
Skin Temperate	ure Partially	Partially met Adequate	
Wind Speed and Direction	on Partially	Partially met Adequate	
Air Temperate	ure Not met	t Adequate	
Humic	lity Not met	t Adequate	
Bulk Surface Curre	nts Partially	y met Adequate	
Skin Surface Curre	nts Not met	t Adequate	
Surface Solar Radiat	ion Partially	Partially met Adequate	
Surface Longwave Radiat	ion Partially	Partially met Adequa	
Albe	edo Partially	Partially met Me	
Sea St	ate Require	Requirement Unknown Requirement K	
		Requirement not met / inadequate	
		Requirement partially met / threshold	
		Requirement adequately met / breakthrough	
		Requirement fully met / ideal goal	

Need more than 10 essential ocean & climate variables to compute air-sea heat fluxes.

OceanObs'19 Recommendation: Create an Integrated Surface Ocean Observing System (ISOOS)

Mean Net Surface Heat Flux (Wm⁻²)

 OceanSITES surface platforms that measure Net Surface Heat Flux

Key regions needing new OceanSITES flux platforms

 10°x10° gridpoints. With 1000 platforms, each gridbox could have 2-3 platforms.

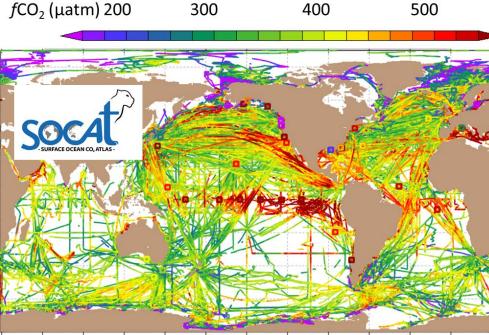
Cronin et al. (2019) "Air-sea fluxes with a focus on heat and momentum"

Satellite Platforms

Fixed Platforms

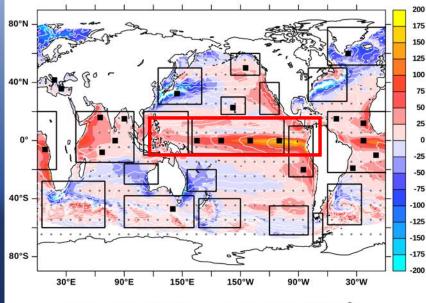
Mobile and Drifting Platforms

OceanObs'19 Recommendation: Create an Integrated Surface Ocean Observing System (ISOOS)


Established Platforms:

New Technologies:

Wanninkhof et al. (2019) **"A Surface Ocean CO₂ Reference Network, SOCONET and Associated Marine Boundary Layer CO₂ Measurements"**

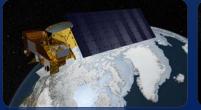


Near-term steps for creating an Integrated Surface Ocean Observing System (ISOOS)

- 1. Identify **stakeholders** and **champions** for expansion of observations for multi-disciplinary and multifunctional ISOOS
- 2. Create a **Task Team** that would report to **GOOS** OOPC, IOCCP, and Biology&Ecosystem **Panels**. Terms of Reference:
 - i. Identify relevant OO19 Community White Papers (CWP) and Common Recommendations and Roadmap activities across the different communities (e.g. weather, climate, carbon, biology and ecosystems).
 - ii. Provide expertise to regional observing systems for design studies, priorities, ... similar to **SOFLUX and TPOS-2020 PBL Task Teams**.
 - iii. Perform array designs
 - iv. Perform intercomparisons across platforms to ensure interoperability
 - v. etc. Contact Meghan.F.Cronin@noaa.gov

OceanObs'19 Recommendation: Create an Integrated Surface Ocean Observing System (ISOOS)

Mean Net Surface Heat Flux (Wm⁻²)

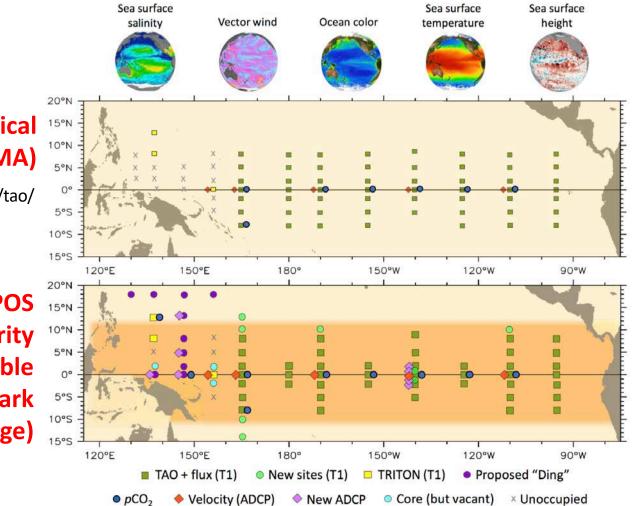

 OceanSITES surface platforms that measure Net Surface Heat Flux

Key regions needing new OceanSITES flux platforms **TPOS-2020**

 10°x10° gridpoints. With 1000 platforms, each gridbox could have 2-3 platforms.

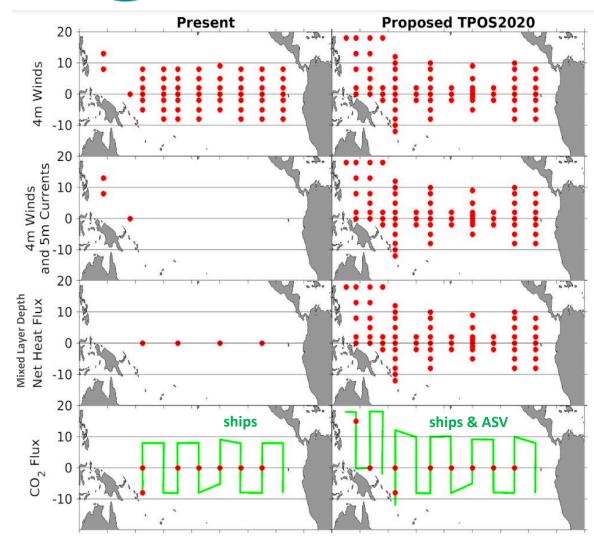
Cronin et al. (2019) "Air-sea fluxes with a focus on heat and momentum"

Satellite Platforms


Fixed Platforms

Mobile and Drifting Platforms

EXAMPLE 1 Tropical Pacific Observing System

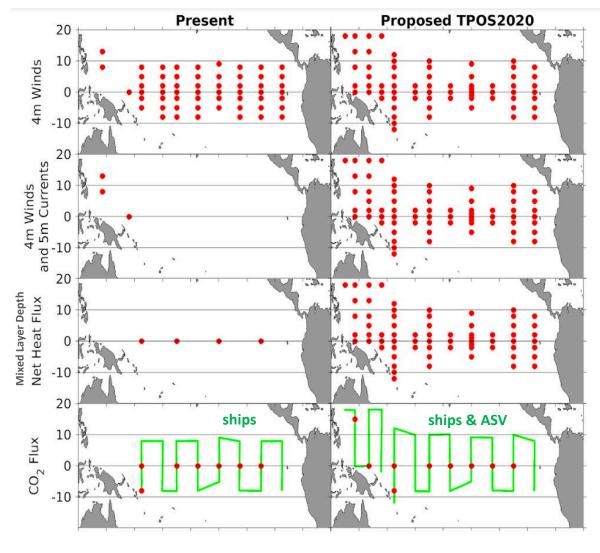

Present Tropical Moored Array (TMA)

https://www.pmel.noaa.gov/tao/

Proposed TPOS TMA high priority sites and double Argo region (dark orange)

What are the differences?

-Better air-sea interaction

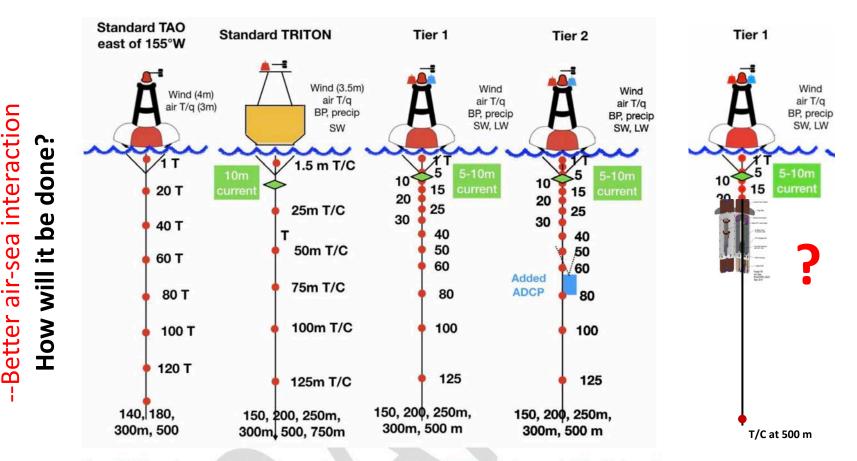


Which sites should be instrumented first? second?...

2020 Tropical Pacific Observing System

What are the differences?

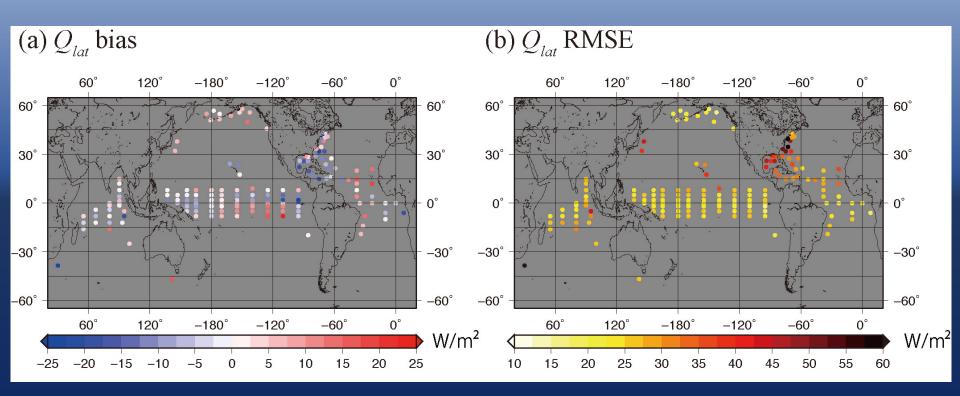
-Better air-sea interaction

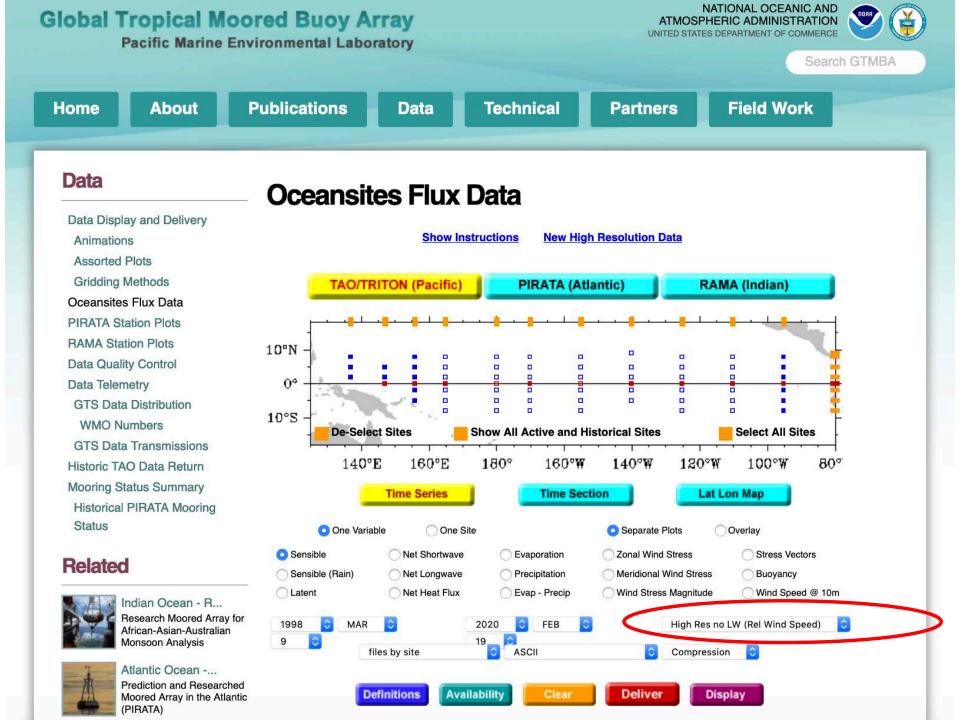

Meghan's idea for near-surface Current Meter Priorities*:

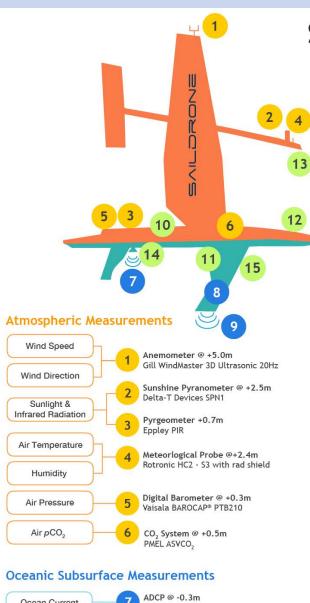
2020 Tropical Pacific Observing System

- Equator, except
 95W
- 2. Meridional lines
 - i. 165E
 - ii. 110W
 - iii. 140W
 - iv. 170W
- 3. Remaining 2N
- 4. Remaining 2S
- 5. 95W meridional

*Assuming W. Pac already covered

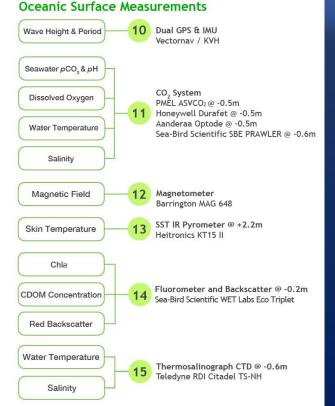

2020 Tropical Pacific Observing System


Figure 7.3: Schematics comparing the instrumentation of the current TAO and TRITON moorings- on the left, with those of the new enhanced TMA Tier 1 and Tier 2 - on the right. In the subsurface red dots and black text indicate the depths of temperature and salinity measurements, and green diamonds velocity measurements. Tier 2 moorings will have an upward looking current profiler (blue rectangle). Above the surface, parameters are noted as: Wind = wind speed, air T/q = air temperature and specific humidity, BP = barometric pressure, precip = rainfall, downwelling SW and LW = shortwave and longwave radiation respectively.


What are the differences?

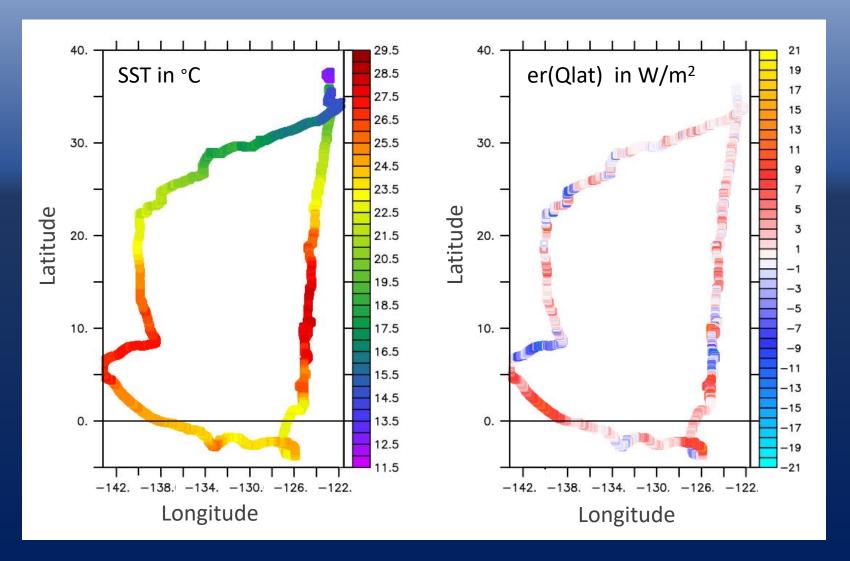
In Situ Array is being used to assess uncertainty in satellite data.

Example: J-OFURO3 satellite based latent heat flux (Tomita et al. 2019)



Saildrone Sensor Suite

Specifications


Length: 7 m Height: 4.6 m (above water line) Depth: 2 m Weight: 545 kg, (fully loaded) Speed: Transit - 3 Kt, Max - 8 Kt Payload Power: 30W Steady state Payload Capacity: 100 kg Max deployed duration: 12 months Longest voyage: 16,100 km

A mobile surface flux and surface current profile platform

Tested in the Tropical Pacific as a pilot study for TPOS-2020 Latent Heat Flux should be calculated from winds relatieve to currents. Use Saildrone to estimate er(Qlat) = Qlat(no Currents) – Qlat(with Currents)

Abstracts deadline 27th March 2020

Manuscripts deadline 30th September 2020

Energy, Water, and Carbon Dioxide Fluxes at the Earth's Surface

Topic Editors:

Meghan Cronin, NOAA PMEL, USA Carole Anne Clayson, WHOI, USA Simon Josey, NOC, UK Petra Heil, Australian Antarctic Division, AU Masao Ishii, Meteorological Research Institute, Japan Paul Dirmeyer, George Mason University, USA

Visit the homepage

http://fron.tiers.in/rt/12257