Challenges in measuring the vertical
structure of near-surface currents
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We want to know how to relate the velocity
at one depth to that at another

. WaCM simulated 1-day coverage
For example, given measurements of sea surface

currents, what could we say about the mixed layer
currents?

Could we use drifters drogued at 15 m to calibrate
or validate satellite surface velocity measurements?
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momentum flux divergence)
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We want to know how to relate the velocity
at one depth to that at another

. WaCM simulated 1-day coverage
This talk is about what makes that difficult (and

interesting):

(1) Near surface shear depends on the turbulent
momentum flux divergence

(2) The vertical shear is probably a strong function of
length scale and time scale

(3) Measurements of near-surface vertical shear are
very difficult because of biases and errors
associated with surface waves
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Wave orbital velocities

Consider a monochromatic linear wave:
n = asin(kx — wt)

u = awe’ sin(kx — wt)

Current meter at a fixed position, [Xo, Zo]

u = awe’ sin(kx, — wt)
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Time average I <u> -0

As we all know, the
Eulerian mean is
Zero




Wave orbital velocities

Consider a monochromatic linear wave: Wave orbital velocities pose a
n = asin(kx — wt) mechanical and sampling problem

u = awe’™ sin(kx — wt) Velocity measured at z=11 m
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Mechanical/sampling problems

* Pumping (of historical note)
* Flow distortion/wake
* Aliasing

* Tilting/heaving correlated with flow

) Velocity measured at z=11m
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Interpretation of near-surface current meter observations *

RAYMOND POLLARDT

A classic but forgotten paper:
Only 13 citations in the last 30 years
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Interpretation of near-surface current meter observations *

RAYMOND POLLARDT

A classic but forgotten paper:
Only 13 citations in the last 30 years

(>25% of them coauthored by Fabrice Ardhuin!)
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Interpretation of near-surface current meter observations *

RAYMOND POLLARDT

Consider a monochromatic linear wave:
n = asin(kx — wt)

u = awe’ sin(kx — wt)

Current meter following the surface, [x, z] = [x¢, n + 2]
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RAYMOND POLLARDT

Consider a monochromatic linear wave:
n = asin(kx — wt)

u = awe’ sin(kx — wt)

Current meter following the surface, [x, z] = [x¢, n + 2]

u = awek?o gak sinlkxo—wt)gin (kx, — wt)

= awe’? [1 + ak sin(kx, — wt)]sin(kx, — wt)
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Time average > (1) = E a2 whkekzo
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Consider a monochromatic linear wave:
n = asin(kx — wt)

u = awe’ sin(kx — wt)

Current meter following the surface, [x, z] = [x¢, 7 + 2]

u = awek?o gak sinlkxo—wt)gin (kx, — wt)

= awe’? [1 + ak sin(kx, — wt)]sin(kx, — wt)
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Compare to Stokes drift current:

(Wstokes = a’wke?
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Pure vertical motion is an optimistic assumption; things
can be worse when the buoy also moves side-to-side

Consider a monochromatic linear wave:
n = asin(kx — wt)

u = awe’ sin(kx — wt)

Current meter following the surfacd

u = awek?o gak sinlkxo—wt)gin (kx, — wt)

= awe’? [1 + ak sin(kx, — wt)]sin(kx, — wt)
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Something similar happens for all other velocity
measurements that are not purely Eulerian or Lagrangian

(Amador et al., 2017 looked at this for AUVs)

Time average of
point measurement
following surface
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Something similar happens for all other velocity
measurements that are not purely Eulerian or Lagrangian

Goal: do a realistic simulation of this
effect (an OSSE), with a realistic
wavefield and instrument sampling

Consider a monochromatic linear wave:
n = asin(kx — wt)

u = awe’ sin(kx — wt)

Current meter following the surface, [x, z] = [x¢, n + 2]
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Simulated wave field

JONSWAP directional wave spectrum:
Sig. Wave Height=5 m
Peak period=10s
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Simulated wave field
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Simulated velocity of moored current meter at 11 m
depth (surface following)

Velocity measured atz=11m
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Simulated velocity of moored current meter at 11 m
depth (surface following)
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Simulated velocity of moored current meter at 11 m

depth (surface following)

Spurious current in 1-minute averages
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Something similar happens for all other velocity
measurements that are not purely Eulerian or Lagrangian

(Amador et al., 2017 looked at this for AUVs)

Time average of
point measurement
following surface




find the different ways Stokes ¢
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Figure 1. Images of R/V F.G. Walton Smith and observational tools: (a) Close-up of bamboo plates in wind row adjacent U(Z) [m/s]
to the small boat Tatiana. (b) View of bow-mounted instruments. (c) Close-up of GPS-tracked drifter, with white drogue
visible below surface. (d) Drone shot of R/V F.G. Walton Smith.
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