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Applications:

Examples:

Search and rescue at seq;
Oil spills;

Oceanographic experiments in the
Lagrangian framework;

Fisheries and resource management
(e.g. larvae dispersal);

Counter-mine warfare.

Properties:

Event driven and local in space;

Might be away from permanent
observing infrastructure (including HF-
Radars);

Escalation of observing effort (drifter
deployment, image acquisition).



(a) True surface
velocity field from a
twin model.

Application: constraining ocean (sub)-mesoscale activity
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(b) Mapped velocity
field from a SWOT-
like altimeter.
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Problem:

 Global surface currents are poorly
constrained with existing
observations.

Examples of Applications:

 Real-fime ocean forecasts (from global
ocean to regional OOS);

e Ocean and coupled global re-analysis;

e Scientific analysis of ocean-
atmospheric fluxes.

Properties:
e Oftenrelevant to global ocean;
e Has to rely on routine observing platforms;

e Effort measured in ferms of continuous
improvements in forecast (5 days +).
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State-of-the-art: assimilation of surface drifters
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e (D) 300 surface drifters released
during GLAD/CARTHE experiment
in GOM.

Resulis:

010 ZZ;N;(WD.ﬂ t . t””?" 1A”““" 20 S tzm (A and B) assimilation of T/S
| (P Brifter rajeciories 1 Aug.- 35 Sepl. 2012 measurements alone is insufficient to
effectively constrain lagrangian

29°N

22222

27°N

-0.2

25°N

NNP——————mmmmm | | 2N

29°N

27°N

25°N

A A Free run trajectories;
2 Y o T/S assim. C .
AL 02 G N [Ts + drifter assim. e (C and E) assimilation of drifter data
| / N\, considerably reduces drifter separation
{ was a SR p— o
279N ‘\\\7& 220 '\_\\ = S i ] errors.
;\;"/i)—)) % y. , R “v / p— .
o5 i Conclusions:
ow 20°W s8°wW se°wW saow 2o m 08/09/12 08/19/12 08/29/12 09/08/12 09/18/12 09/28/12 . .
(E) Average separation of observed and ° AUgmeﬂTlng routine measurements
SSH (color) and observed (green) and simulated drifters after 24 hours. with Iogro ngion data is effective

forecasted (blue) drifter trajectories.

during SAR+ operations.

‘Muscarela et.al. 2015 MWR °



Assimilation of HF-Radar data

Observation: 07-23-2008 Free Run Analysis Forecast
T L T
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. Background:
) e Considerable research on assimilation of

surface currents since wide deployment
of HF-Radars along the U.S. coasts.

Results (e.g. Yu 2012):

* Assimilation of HF-Radar data improves
prediction of mesoscale-driven currents in the
3 coastal ocean;
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Gap between empirical and dynamic models
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Observational gap in SSH altimetry
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(1) SSH on May 2" 2014. (a) SSH in nature run; (b) Altimeter

observations; (c) SWOT observations.
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(2) 96-hour forecast of surface currents 4 June 2014. (a) Nature run; (b)
forecast initialized using Altimeter; (c) forecast initialized using SWOT.
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(3) 96-hour surface current forecast RMSE.

Results (e.g. Carrier et.al. 2016).

NASA's Surface Water and Ocean
Topography (SWOT) altimeter can directly
observes mesoscale ocean fronts (1) and can

improve the forecast of the surface currents
(2).

Conclusions:

(3) However, because of the SWOT revisit
times (21 days for full Earth coverage),
SWOT adds only marginal improvement
to the skill of the forecast currents.
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Oceanic scales constrained by current and near-future observations

(b)
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(A) Surface relative vorticity normalized by the Coriolis
parameter from the 1 km NATURE run on January 1, 2016.
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(B) SSH scales constrained by assimilation of Altimeter and SWOT
data
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(C) Rossby radius of deformation in km.

(B) Assimilation of SWOT data will improve over existing
Altimeter-only observing system.

(C) However, because of the SWOT re-visit times,
oceanic mesoscale will remain unconstrained outside
of the deep Tropics.
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Opportunities

23 . » ‘”.ﬂ) $80
o
L i e //,-
/'/('
,A-// :
o
°o l/’
S RYA
8 /{/ /—\ s
3 . 7 \\
[ % L0, e
I /7 -]
u:’ ”/
/ </ \
a4 i \¥ \
g \
\

o Gaoetiothie Burkice R, 220 2420 26°0 28°0
Longitude () Geostrophic Surface current (m/s) CNES DAY : 21080 Longitue (£} Radial surface velacity (m/s) 19-SEP-2007 21:05:52
= T Io—

(A) Surface currents retrievals from (a) altimetry (b) ASAR.

Johannessen et.al. 2008 GRL.

(B) JCSDA/JEDI infrastructure

(A) Novel observations:

Multiple (but unconventional sensors) provide
routine (SAR, GEOS) and on-demand (SAR)
observations of ocean surface and near-
surface winds.

It is possible to refrieve and assimilate highly-
resolved observations of surface currents from
these novel platforms.

(B) New infrastructure:
e Joint Center for Satellite Data Assimilating

(JCSDA) is developing a Joint Effort for
Data Assimilation Integration (JEDI).

e An opportunity to foster the

development that can be used across
the community (NOAA, NASA, NSF, Navy,
UKMO).
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Focused activity

A coordinated field program/ model
development:

e Massive release of lagrangian drifters
similar to GLAD.

e Coincident with SWOT inaugural mission.

e Coordinated acquisition of new satellite
imagery (e.g. SAR, GEO, ..?9)

e Model/assimilation development effort
. that can be directly integrated in to the
) - JEDI infrastructure.
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