Simulating the transport of floating marine litter across scales

Erik van Sebille

and the topios.org and oceanparcels.org teams

Simulating surface transport on a global scale with GlobCurrent

Ekman + Geostrophic Currents

Onink, Wichmann, Delandmeter & Van Sebille (2019) Journal of Geophysical Research 3

Separating the effects of Ekman and geostrophy

Onink, Wichmann, Delandmeter & Van Sebille (2019) Journal of Geophysical Research 3

The effect of Stokes drift in transporting floating items southward

Fraser, Morrison, Hogg, Macaya, Van Sebille, Ryan, Padovan, Jack, Valdivia & Waters (2018) Nature Climate Change 8

The effects of waves via Stokes drift

Onink, Wichmann, Delandmeter & Van Sebille (2019) Journal of Geophysical Research 3

The depth distribution of plastic

Reisser, Slat, Noble, Du Plessis, App, Proietti, De Sonneville, Becker & Pattriaratchi (2015) Biogeosciences 3

Transition matrices from drogued vs undrogued drifters

Van der Mheen, Pattiaratchi & Van Sebille (2019) Journal of Geophysical Research 8

The effect of large-scale vertical shear

Wichmann, Delandmeter & Van Sebille (2019) Journal of Geophysical Research 3

So how important are the initial conditions?

170°W

Wichmann, Delandmeter, Dijkstra & Van Sebille (2019) Environmental Research Communications 3

2000-01-05

120°W

Quantifying mixing entropy

Wichmann, Delandmeter, Dijkstra & Van Sebille (2019) Environmental Research Communications 3

The IMDOS white paper for OceanObs'19

OPEN ACCESS

Edited by:

Sanae Chiba, Japan Agency for Marine-Earth Science and Technology, Japan

Reviewed by:

Hans-Peter Plag, Old Dominion University, United States Rene Garello, IMT Atlantique Bretagne-Pays de la Loire, France

*Correspondence:

Nikolai Maximenko maximenk@hawaii.edu

Specialty section:

This article was submitted to Ocean Observation, a section of the journal Frontiers in Marine Science

Toward the Integrated Marine Debris Observing System

Nikolai Maximenko^{1*}, Paolo Corradi², Kara Lavender Law³, Erik Van Sebille⁴, Shungudzemwoyo P. Garaba⁵, Richard Stephen Lampitt⁶, Francois Galgani⁷, Victor Martinez-Vicente⁸, Lonneke Goddijn-Murphy⁹, Joana Mira Veiga¹⁰, Richard C. Thompson¹¹, Christophe Maes¹², Delwyn Moller¹³, Carolin Regina Löscher¹⁴, Anna Maria Addamo¹⁵, Megan R. Lamson¹⁶, Luca R. Centurioni¹⁷, Nicole R. Posth¹⁸, Rick Lumpkin¹⁹, Matteo Vinci²⁰, Ana Maria Martins²¹, Catharina Diogo Pieper²¹, Atsuhiko Isobe²², Georg Hanke¹⁵, Margo Edwards²³, Irina P. Chubarenko²⁴, Ernesto Rodriguez²⁵, Stefano Aliani²⁶, Manuel Arias²⁷, Gregory P. Asner²⁸, Alberto Brosich²⁰, James T. Carlton²⁹, Yi Chao¹³, Anna-Marie Cook³⁰, Andrew B. Cundy³¹, Tamara S. Galloway³², Alessandra Giorgetti²⁰, Gustavo Jorge Goni¹⁹, Yann Guichoux³³, Linsey E. Haram³⁴, Britta Denise Hardesty³⁵, Neil Holdsworth³⁶, Laurent Lebreton³⁷, Heather A. Leslie³⁸, Ilan Macadam-Somer³⁹, Thomas Mace⁴⁰, Mark Manuel^{41,42}, Robert Marsh³¹, Elodie Martinez¹², Daniel J. Mayor⁶, Morgan Le Moigne⁷, Maria Eugenia Molina Jack²⁰, Matt Charles Mowlem⁶, Rachel W. Obbard⁴³, Katsiaryna Pabortsava⁶, Bill Robberson³⁰, Amelia-Elena Rotaru¹⁴, Gregory M. Ruiz³⁴, Maria Teresa Spedicato⁴⁴, Martin Thiel⁴⁵, Alexander Turra⁴⁶ and Chris Wilcox³⁵

REVIEW published: 28 August 2019 doi: 10.3389/fmars.2019.00447

Mapping of plastic with Earth Observation?

Marine process	Spatial	
	Spatial Extent(max)	Rec Resoluti
River discharge Spill Shoreline accumulation Submesoscale convergence filaments	100 Km 100 Km 1000 km 10 km	30 m 1 m 1 r 30 m
Marine process		Tempora
	Lifetime of process (max)	Requir ob
River discharge Spill Shoreline accumulation Submesoscale convergence	1 month 1 month 10 year 1 month	12]

Martinez-Vicente, Clark, Corradi, Aliani, Arias, Bochow, Bonnery, Cole, Cozar, Donnelly, Echevarria, Galgani, Garaba, Goddijn-Murphy, Lebreton, Leslie, Lindeque, Maximenko, Martin-Lauzer, Moller, Murphy, Palombi, Raimondi, Reisser, Romero, Simis, Sterckx, Thompson, Topouzelis, Van Sebille, Veiga & Vethaak (2019) Remote Sensing a

quired Spatial on of observations

n (G) 500 m (T) n (G) 50 m (T) m (G) 5 m (T) n (G) 100 m (T)

1

red frequency of bservations

3 h (T) 2 h (T) h (G) 5 d (T) 1 d (T)

Tracking pumice to validate surface flow

fieldset = FieldSet(U=fset_currents.U + fset_stokes.U + fset_wind.U, V=fset_currents.V + fset_stokes.V + fset_wind.V)

Jutzeler, Marsh, Van Sebille, Mital, Carey, Fauria, Manga & McPhie (2020) Geophysical Research Letters 8

Conclusions

Geostrophy, Stokes and Ekman are all important for the transport of floating material

Events like the Tonga eruption provide unique opportunity to validate transport models

However, not on timescales of much more than a few years

The physical oceanography of the transport of floating marine debris

Van Sebille, Aliani, Law, Maximenko, Alsina, Bagaev, Bergmann, Chapron, Chubarenko, Cózar, Delandmeter, Egger, Fox-Kemper, Garaba, Goddijn-Murphy, Hardesty, Hoffman, Isobe, Jongedijk, Kaandorp, Khatmullina, Koelmans, Kukulka, Laufkötter, Lebreton, Lobelle, Maes, Martinez-Vicente, Morales Maqueda, Poulain-Zarcos, Rodríguez, Ryan, Shank, Shim, Suaria, Thiel, van den Bremer and Wichmann (2020) Environmental Research Letters 3

PHYSICAL PROCESSES

- Large-scale open ocean processes
- Submesoscale open ocean processes
- Open ocean Stokes drift
- Internal tides
- Direct wind transport (windage)
- Langmuir circulation
- Vertical mixing
- Ice formation, melting and drift
- River plumes and coastal fronts
- Coastal currents, surface waves and beaching
- Extreme events
- Transport by biology

