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What is optimal observing system design?

A range of computational tools to support science applications,
where experimental /| observational approaches are....

— too costly / slow / dangerous,

— orimpossible
Problem statement:

What is an optimal sampling strategy using given or hypothetical
observational assets to best constrain a Quantity of Interest (Qol)?

— When a Qol is unobserved (different variable, different location,
different time) — an ubiquitous problem!

— Or when the Qol is a forecast
— Or model parameters
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What are ‘“Quantities of Interest” (Qol)

They are oceanic/atmospheric/climate metrics that we seek to quantify

Examples:

e Meridional volume/heat/freshwater transport across given section
— E.g.: AMOG; transports across Drake Passage, Fram Strait, ITF, ...

e Regional ocean heat content (OHC), or its convergence/divergence
— E.g.: Greenland margin subsurface OHC, Nordic Seas OHC, ...

e Climate indices, such as SST, Sea Level Anomaly, ...
— E.g.: Nino3.4 index; US East Coast SLA; ...

e Forecast skill: Arctic seaice cover, ...
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Simulation-based strategies of observing system design

e Observing System Experiments (OSEs)

e Observing System Simulation Experiments (OSSEs)

e Forecast Sensitivity Observation Impacts (FSOI)

e Optimal Experimental Design (OED) / Quantitative Network Design (QND)

Most of these approaches take place in the context
of data assimilation & prediction systems

Why?
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OED in the context of data assimilation

A major goal of DA:

“Ideally, all observational data streams are interpreted
simultaneously [for calibration] with the process
information provided by the model, [which leads to] a
consistent picture of the state of the Arctic system that
balances all the observational constraints, taking into
account the respective uncertainty ranges.”

Kaminski et al., The Cryosphere, 2015
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Approaches

Some covered in OceanObs’19 CWP:

e Y. Fuijii et al., Front. Mar. Sci. (2019)

e P.Heimbach et al., Front. Mar. Sci. (2019)
e C.Leeetal., Front. Mar. Sci. (2019)

e A.Moore et al., Front. Mar. Sci. (2019)

e G.Smith et al., Front. Mar. Sci. (2019)

e Subramanian et al., Front. Mar. Sci. (2019)
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Approaches:
Observing System Experiments (OSEs)

a.k.a. Observation Withholding/Denial Experiments

e A data assimilative run in which a certain observation-type is withheld
from, or added to, the regularly assimilated data.

e The impact of these withheld/added data is assessed by comparing the
OSE with the control simulation in which only regular data are assimilated

Some drawbacks:

e The error reduction cannot be estimated accurately because the true
state is not known.

e Canonly be used to evaluate preexisting, not future, observing systems
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Approaches:
Observing System Simulation Experiments (OSSEs)

e Synthetic data, intended to mimic observations from the proposed
observing system, are generated from a model simulation that is intended
to represent the “true’” ocean, thus called the “Nature Run’’, with
observation errors added based on prior information.

e Impact of synthetic data on forecast improvement is assessed from the
error reduction in OSSEs when assimilating the new data

Some drawbacks:

e nature runs may not be good enough to realistically model the true ocean
and the phenomena of interest

e results may be system-dependent, or results may only apply within the
used OSSE system, but are not connected to the real world
T |
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Approaches:
Adjoint-based sensitivity methods

Uncover teleconnections, physical/dynamical relationships and causal
chains that connect the observed quantities to the rest of the global ocean

1. Adjoint sensitivities

2. Observation sensitivities & FSOI

3. Hessian-based uncertainty quantification (UQ)

4. Hessian-based optimal experimental design (OED)

Main point:

They are related, but vary substantially in degree of sophistication and
required computational needs. Level 3 rarely, and level 4 probably never
used so far in context of ocean/climate/NWP context.
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Approaches:
Adjoint-based sensitivity methods

Application in parameter &
state estimation

(PSE)

Objective function is weighted least-
squares model-data misfit function
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Approaches:
Adjoint-based sensitivity methods

Application in
sensitivity analysis

Objective function is scalar-valued
Quantity of Interest (Qol), metrig, ...
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Approaches:

Adjoint-based sensitivity methods

How to combine?

l.e., how do the observations
used to constrain the PSE aid
to reduce the uncertainty in

the Qol
?
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Optimal Observing System Design

iml
I
ODEN INSTITUTE




The uncertainty propagation & optimal design problem

control variables

GCM
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v:

Formalize:

e the uncertainty reduction of the
PSE provided by observations

— Information provided by the

observation

e How the reduced uncertainties
in the PSE help to reduce the
uncertainty in the Qol

— Information required by the

Qol

Both are achieved with the adjoint!
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Bayesian UQ in large-scale inverse problems based on (low-rank) Hessians

The OSNAP Array
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Nora Loose

@Noral.oose Follows you

Overturning in the Subpolar

Research fellow at UT Austin & PhD

N Orth Atl a ntlc Program (OS NAP) student at the University of Bergen.
- - — Mathematician, physical
http: / /WWW.O-snap.org oceanographer, climate scientist.
Lozier et al., BAMS (2017) ®© Austin, TX
Lozier et al., Science (2019) N. Loose, PhD thesis (2019)
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Bayesian UQ in large-scale inverse problems based on (low-rank) Hessians

Observations: heat & volume transport across:
—lceland-Scotland Ridge
—RAPID array (26N)

— OSNAP West
— OSNAP East
— Davis Strait

Quantity of Interest (Qol):
subsurface heat content outside of

Sermilik Fjord & Helheim Glacier (Southeast Greenland)
N. Loose, PhD thesis (2019)
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Bayesian UQ in large-scale inverse problems based on (low-rank) Hessians
Prior & posterior variances of Quantity of Interest Q

«= (5) 8(50) wer= (50 »(5)
Hprior =\ “ox ax | ' HPest = \ Bx Ox

Uncertainty reduction

where

Prior-weighted Qol sensitivity Prior-weighted misfit sensitivity
Information required by Qol Information transmitted by obs.
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Bayesian UQ in large-scale inverse problems based on (low-rank) Hessians

Prior & posterior variances of Quantity of Interest Q

«= (52) 8(50) wer= (50) £(52)
Hprior = \ “Bx ax ) ' HPest = \ Bx Ox

J

Almost everything is contained in P
that posterior error covariance
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Bayesian UQ in large-scale inverse problems based on (low-rank) Hessians

Prior & posterior variances of Quantity of Interest Q

«= (3) 8(50) wer= (50) »(5)
Hprior = \ “ox ax | ' HPest = \ Bx Ox

with A, . V, truncated eigenvalues & eigenvector matrix

B,
|

— B/2 (1 _ v,D,v,T) B2 D, = diag (/\/\_4-1)

Nobs
= BY2¢ | — idiv;v-r B2, d; = A
= ' ANi+1
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How well does each observing system constrain the solution & relevant Qols?

Prior & posterior variances of Quantity of Interest Q
90\ " _ (9Q 99\" (09
Hprior = B_X B a s HMpost = a_x P E

Case of only 1 observation:

Uncertainty reduction of Qol Q 1 hrough observation 7

= d; < info required by @, info transmitted by 7 >
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How well does each observing system constrain the solution & relevant Qols?

Uncertainty reduction of Qol @ through observation 7

Ix

182 (3)" || 11B2 (32)" |

ox Ix

ao\ T ag\T
1 — Hpost _ 4 < 81/2(}‘)79) 31/2(_);7_) >
- U]

= d; < info required by Q, info transmitted by 7 >

e Hypothetical proxy potential of observation:

— Projection of information communicated (via model dynamics) by
observation (J) onto information required by Qol (Q) via scalar product

e Effective proxy potential of observation:

— Multiplication of scalar product by a scaling factor d



How well does each observing system constrain the solution & relevant Qols?

Qol = subsurface Obs; = heat transport  Obs; = volume transport
temperature near Helheim across DS across DS
Q| swdown V1 |swdown V1 |swdown




How well does each observing system constrain the solution & relevant Qols?

Qol = subsurface Obs; = heat transport  Obs; = volume transport
temperature near Helheim across DS across DS
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N. Loose, PhD thesis (2019)
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How well does each observing system constrain the solution & relevant Qols?

Hypothetical proxy potential o

from scalar product [ projection of all observation ©2 J l
sensitivities with Qol sensitivities . il Il[ s
e Accounts for propagation of all uncertainties " r 1 ——
e Accounts for observational redundancy —r
. m initial
e Accounts for all dynamically viable pathways °'4w A P A T A
between observed and Qol location s =2 & ¢ ¢ § <§ %
D e = © (a
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N. Loose, PhD thesis (2019)



How well does each observing system constrain the solution & relevant Qols?

1

Information
transfer/damping

0.5

factor:

Ratio of observation to prior

e Accounts for obs. .
| error uncertainty:

Errors (rho)

. >> 1: large obs. uncertaint
 Accounts for prior & Y

knowledge /
uncertainties (beta)

i.e., small reduction
<< 1: small obs. uncertainty,
i.e., large reduction

N. Loose, PhD thesis (2019)



How well does each observing system constrain the solution & relevant Qols?

Effective proxy
potential l
e Accounts for 05 1 - Jl e
everything r iryco |
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How well does each observing system constrain the solution & relevant Qols?

Effective proxy potential:

e Arises for such observational assets that share the same dynamical
adjustment pathways as those of Qols

e Arises if the information contained in the observation is not masked too
strongly by observational noise/error

In Practice:

e Eigen-decomposition of the misfit Hessian is key

— Leading eigenvectors/values point to most potent obs. constraints,
i.e., data-informed directions in control space

— The eigen-decomposition is also a formal framework for letting the

- dynamics determine the effective low-order subsEace/aﬁﬁroximation!
ODEN INSTITUTE




Kaminski et al., The Cryosphere (2015, 2018)

Similar approach, but using a-priori
control space reduction via
“large region approach”

Obs.:

Operation IceBridge retrievals
of seaice area, ice & snow thicknesses,
averaged over “large regions”

Qols:

Forecasts of seaice area & thickness in
Chukchi & Beaufort Seas
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Kaminski et al., The Cryosphere (2015, 2018)

Observation
sensitivities

(information
communicated
by observations)
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Kaminski et al., The Cryosphere (2015, 2018)

e

Qol "

sensitivities |1 _—
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Kaminski et al., The Cryosphere (2015, 2018)

Uncertainty Reduction:

Projects observation uncertainties -
onto Qol uncertainties “

A simplified statement on how to
evaluate posterior error covariance
by means of inverse Hessian

Find data-informed subspaces

Find data complementarity vs.
redundancy (not just “a lot of data”)
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Conclusions

Adjoint & Hessian-based UQ and observing system design offers:
e Dynamics-based assessment of existing or hypothetical obs. systems

e Links observational assets to a Qol that is ...
— ... unobservable or unobserved,
— ... adifferent type of quantity/variable than measured quantity,
— ... spatially and/or temporally non-collocated
— ... aforecast, a parameter,...

e Quantifies the degree to which information required by Qol is
transmitted by the information ”transmitted” by the observation

e Quantifies observational complementarity vs. redundancy
o Accounts for high-dimensional, multi-variable uncertainty spaces
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Conclusions

Adjoint & Hessian-based UQ and observing system design offers:
e Framework does not require actual measurement values(!)

— Can therefore distinguish between hypothetical and effective (noise-
masked) proxy potential of observations

Note that...

— These frameworks are still being developed for real-world applications
(e.g., ocean / climate models), i.e. ongoing research & development

— These frameworks require:
e advanced computational algorithms
e significant computational resources
- e time to fully explore....
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Conclusions

e Arange of tools available for optimal observing system design
— Varying degree of sophistication & flexibility
— Many remain little (or non) explored in real-world applications !

e Given the cost associated with observing system, improving capabilities
of quantitative/optimal OSD seems well worth

e No claim is made that OSD will replace human judgement !
— It is a quantitative tool in a portfolio of decision-making tools
e |deally a sustained, hand-in-hand iterative process of improving
— observing systems
— models (which are required for forecast)
mmm — DA systems used for calibration, estimation, forecasting, OSD, ...
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DILBERT BY SCOTT ADAMS
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Some useful references

OceanObs’19:

e Fuijii et al., Front. Mar. Sci. (2019)

e Heimbach et al., Front. Mar. Sci. (2019)
e Lee etal., Front. Mar. Sci. (2019)

* Moore et al., Front. Mar. Sci. (2019)

e Smith et al., Front. Mar. Sci. (2019)

Others:

e Kaminski et al., The Cryosphere (2015, 2018)

o Atlas & Hoffman, Bull. Amer. Met. Soc. (2014)

o Kalmikov & Heimbach, SIAM J. Sci. Comput. (2014, 2018)
o Alexanderian et al., SIAM J. Sci. Comput. (2016)

Loose, Ph.D. thesis (2019)
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