Nonlinearity in Climate Responses

Prepared by Bruce Anderson, Boston University

Developing appropriate local and regional adaptation and planning activities in response to climate variability arising from increased anthropogenic greenhouse gas emissions/concentrations requires producing forecasts of future climate change and its regional impacts. Many times, these forecasts rely upon a comparison between the current climate state and its final state, under the assumption that the relevant climate parameters will evolve in a quasi-linear sense from one to the other. However, given the complexity of the climate system this evolution may instead follow a non-linear path that could result in either "tipping-point" (i.e., increased sensitivity to forcing) or "turning point" (i.e., reduced or even reversed sensitivity to forcing) behavior. Examples of nonlinear behavior in historical and projected climate parameters include: accelerated melting of Arctic sea ice; reversal of initial soil moisture tendencies; increasing trends in the rate of sea-level rise; and discontinuous shifts in ecosystem communities. Compounding this complexity is the fact that in certain regions, the inconsistency between individual model forecasts, introduced either through natural climate variability or initial-state dependence, poses inherent limits to climate predictability even on multidecadal time-scales.

Here we emphasize the need to identify and analyze regions with the propensity for highly non-linear and/or non-robust long-term climate evolutions. The reasons for doing so are three-fold:

- 1) For certain regions and certain parameters the adaptation and planning strategies developed in response to near-term changes (over the coming decades) may need to differ from those developed in response to long-term changes (over the coming century);
- 2) Where identified, delayed responses to anthropogenic forcing are ones that can be avoided if mitigation strategies are employed that prevent the CO₂ concentrations and/or global temperatures from reaching a particular threshold; and
- 3) Conversely, it must be recognized that early-onset responses to anthropogenic forcing cannot be avoided through mitigation alone and will in fact occur much sooner than the century time-scale considered in most linear analyses.