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Constructing a calving record for Helheim Glacier 
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Comparing the calving record with climate indices 
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(Andresen et al. 2012) 
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Multi-decadal variability 
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Timing of instability of Jakobshavn Isbræ and Helheim Glacier concurs with: 
 

 - a positive Atlantic Multi-decadal Oscillation 
 - a negative North Atlantic Oscillation index 
 - changes in sea ice occurrence around Greenland 
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The late 1930s and early 2000s episodes of marked 
glacier retreat of Jakobshavn Isbræ and Helheim 
Glacier may stand out due to the coincidence of:  
 
Subsurface warming of the ocean around Greenland 
Record low sea ice occurrence  
Record warm summer air  
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What happened to the large outlet glaciers during the LIA? 



Jakobshavn Isbræ 

Helheim Glacier 

Kangerdlugssuaq Glacier 

(Kjeldsen et al., submitted) 
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In regions with quite warm subsurface waters these have the 
potential to trigger glacier instability even with minimal glacier 

discharge 
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On inter-annual time scales episodes of increased fjord 
circulation are linked with a positive NAO index and increased 

sea ice occurrence on the shelf  - thus a climatic setting impeding 
calving rates in spite of marked renewal rate 



Summary of findings 
 

1. Timing of instability of Jakobshavn Isbræ and Helheim Glacier concurs with: 
 

 - a positive Atlantic Multi-decadal Oscillation 
 - a negative North Atlantic Oscillation index 
 - decreased sea ice occurrence around Greenland 
 
 
2. The late 1930s and early 2000s episodes of marked glacier retreat of Jakobshavn Isbræ 
and Helheim Glacier may stand out due to the coincidence of: Subsurface warming of the 
ocean around Greenland, record low sea ice occurrence and record warm summer air  
 
 
3. In regions with quite warm subsurface waters these have the potential to trigger glacier 
instability even with minimal glacier discharge 
 
 
4. On inter-annual time scales episodes of increased fjord circulation are linked with a 
positive NAO index and increased sea ice occurrence on the shelf  - thus a climatic setting 
impeding calving rates in spite of marked renewal rate 
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