UNIVERSITY OF MICHIGAN

Bound to fail

J.N. Bassis Department of Atmospheric, Oceanic and Space Sciences University of Michigan

Iceberg Calving

Definition: sudden detachment or breaking away of a block of ice from an ice mass

Iceberg Calving

Definition: sudden detachment or <u>breaking</u> away of a block of ice from an ice mass

Iceberg calving requires *fracture* of ice

Evidence for a dynamic control on terminus position

Figure 4 Relation between calving rate and glacier speed on Columbia Glacier, using values determined for each flight interval (left) and Gaussian smoothed values (right) *Source*: based on data from Krimmel (2001)

Representation of iceberg calving

Stamp Collecting (focus on details) Caricature (focus on big picture)

Representation of iceberg calving

Stamp Collecting (focus on details)

Fracture mechanics approach: Simulate initiation and propagation of fractures within the ice

Examples: LEFM, Nye-zero stress model, damage mechanics

Caricature (focus on big picture)

<u>Calving law approach</u>: Represent calving rate as a function of internal and external variables

Examples: Height-above-buoyancy, water depth, strain rate, ice thickness

Iceberg Calving Regimes

Grounded termini

Floating termini

Iceberg Calving Regimes

Grounded termini

What causes different calving regimes?

Floating termini

Failure of ice

Ice fails when yield stress exceeded

Failure of ice

Maximum height of calving cliff

Ice shelves and ice tongues are most stable configuration for given ice thickness

What about the lower limit?

Literal interpretation of Austin Post "Columbia Glacier is too shattered to support a floating ice tongue"

Conceptual Model of Ice: Molecular Dynamics

Atom: from Greek meaning uncuttable or indivisible

Molecule: Atoms held together by bonds

"Atoms" of ice are spherical boulders of ice

"Molecules" are boulders of ice glued together by bonds with finite strength

Spheres of ice interact through: (1) elasticity, (2) friction, (3) bond forces

music of the spheres?

Icebergs capsize after detaching

Iceberg detaches and drifts away

More realistic geometry: Helheim Glacier ca 2001-2005

Export of icebergs can limit detachment

2005-05	1 km

Iceberg Calving Regimes

Grounded termini

Floating ice tongues

Erebus ~ 10 km long

Drygalski ice tongue ~ 90 km long

Glacier geometry controls maximum calving cliff height

Upper bound on calving cliff height, based on laboratory fracture strength

Need to explain why grounded glaciers don't all form floating ice tongues

-Surface water fills crevasses?

-Pre-existing fracture initiate upstream and advect to calving front?

- Submarine melting?

Revisit: Floating ice tongues

Basal melt rate and ice temperature controls ice tongue length

Instability grows faster in warm ice where thinning rate is highest