Airborne Remote Sensing in Greenland

Icebridge Gravity and Icepod

New Tools For Ice Ocean Interactions

TEAM GRAVITY: Robin Bell, Kirsty Tinto, Jim Cochran, Dave Porter, Alex Boghosian TEAM ICEPOD: Robin Bell, Nick Frearson, Kirsty Tinto, Chris Zappa

Lamont Doherty Earth Observatory
Columbia University

IcePod Instrumentation

- Optical Instruments
 - IR Camera
 - Pyrometer
 - High Res Vis Wave Camera
 - Scanning Laser
- Radar
 - Deep Ice
 - Shallow Ice [100m]
- Georeference
 - GPS
 - IMU

Lab Installation to Flight Ready in 2 days

1. Disassemble and pack system: ~3h

2. Unpack and install system: ~4h

3. Test System: ~2h

Capturing The Seasonal Melt Cycle

Piggyback Missions on NYANG Missions

April-August

Benchmark Lines

Summit to the Coast (Rink??)

Jakobshavn

Russell Glacier - Return from Raven

Ice Surface Elevation
Surface Temperature
Surface Imagery
Shallow & Deep Radar
Plume Structure
Flow in Fjords

Airborne Remote Sensing in Greenland

Gravity and Icepod

New Tools For Ice Ocean Interactions

TEAM GRAVITY: Robin Bell, Kirsty Tinto, Jim Cochran, Dave Porter, Alex Boghosian TEAM ICEPOD: Robin Bell, Nick Frearson, Kirsty Tinto, Chris Zappa

Lamont Doherty Earth Observatory

Gravity Different Problems Different Approaches

- Morphology Beneath Ice Shelves
- Constraining Sills
- Estimating Basal Conditions
- Fjord Geometry

Also OIB Magnetics constrain" geologic noise"

Smith and Sandwell

Sander Geophysics AIRGrav

- Three orthogonal accelerometers
- Three-axis gyrostabilized, Schuler-tuned table
- Differential GPS to remove airplane acceleration
- Specifically designed for airborne surveys
 - Capable of collecting data on draped flights

Factors Affecting Gravity Data

- Resolution Issues
 - Aircraft Speed
 - Filtering is in time, not in space
 - Elevation
 - 1/r² is real
 - Short wavelengths attenuate faster, so lose resolution
- Aircraft Maneuvers
 - Elevation Changes
 - AIRGrav system designed to deal with draped lines
 - Turns
 - introduce accelerations that appear in gravity values
 - Turbulence

Factors Affecting Gravity Data

- Resolution Issues
 - Aircraft Speed
 - Filtering is in time, not in space
 - Elevation
 - 1/r² is real
 - Short wavelengths attenuate faster, so lose resolution
- Aircraft Maneuvers
 - Elevation Changes
 - AIRGrav system designed to deal with draped lines
 - Turns
 - introduce accelerations that appear in gravity values
 - Turbulence

Filter Length as a Function of Aircraft Speed

Effect of Filters on Measured Gravity Anomalies

Factors Affecting Gravity Data

- Resolution Issues
 - Aircraft Speed
 - Filtering is in time, not in space
 - Elevation
 - 1/r² is real
 - Short wavelengths attenuate faster, so lose resolution
- Aircraft Maneuvers
 - Elevation Changes
 - AIRGrav system designed to deal with draped lines
 - Turns
 - introduce accelerations that appear in gravity values
 - Turbulence

Airborne Gravity Accuracy Assessment Methods

- Intersection (Crossover) Analysis
 - Identify flight path intersections
 - Establish an elevation difference criteria
 - Method is subject to directional filtering
- Repeat Line Analysis
 - Establish horizontal and vertical offset criteria
 - Identify repeat line segments that satisfy criteria for at least a specified time (10 minutes)

Airborne Gravity Accuracy Assessment Methods

- Intersection (Crossover) Analysis
 - Identify flight path intersections
 - Establish an elevation difference criteria
 - Method is subject to directional filtering
- Repeat Line Analysis
 - Establish horizontal and vertical offset criteria
 - Identify repeat line segments that satisfy criteria for at least a specified time (10 minutes)

Repeat Line Analysis

Thule – Camp Century (5 lines) 0.54 mGal (100 sec filter)

Antarctic Sea Ice 0.49 mGal (100 sec filter)

Airborne Gravity Accuracy Assessment Methods

- Intersection (Crossover) Analysis
 - Identify flight path intersections
 - Establish an elevation difference criteria

- Repeat Line Analysis
 - Establish horizontal and vertical offset criteria
 - Identify repeat line segments that satisfy criteria for at least a specified time (10 minutes)

Uncertainties in Derived Products Formal Inversions - Larsen Ice Shelf

Free-air gravity anomalies Derived shelf Bathymetry

Water cavity thickness

Cochran and Bell JGR

Inversion free parameters are:

- Bed Density
- Average Depth

Larsen C Cochran et al

Maximum change is \pm 30-35 meters (in deepest and shallowest regions)

Change through most of region is +15 to -15 meters

- Large Area Coarse Grid Size
- Constraints Marine and Ice Shelf Geophysics

- BEDMAP
- ICEBRIDGE
- Overdeepenings
- Shelf Transverse Troughs

Uncertainties in Derived Products Forward Modeling – Thwaites Glacier

Line by line modeling of IceBridge gravity lines Constraints provided by:

- ATM and MCoRDS data define base of ice and bed where ice is grounded
- Marine bathymetry data define water depths seaward of ice tongue
- Local rock outcrops constrain rock density

Thwaites Tinto et al

- Smaller Area (1/10 the size)
- Finer Line Spacing (10 km)

Conclusions

- 1) Uncertainty in OIB gravity measurements, as determined from repeat flights, is about 0.5 mGal.
- 2) All airborne gravity measurements are subject to uncertainties arising from directional filtering

• 3) OIB gravity data can be used to determine bathymetry under floating ice to \pm 50-200 meters

Gravity Capture
Bathymetry in Ice Covered
Waters

Understand Water Budget and Summer Melt High Resolution Seasonal Observations - ICEPOD

More Information:

http://www.ldeo.columbia.edu/res/pi/

icepod/

