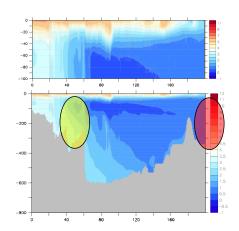

Modeling of intermediate water mass formation and subsurface heat transport in Godthåbsfjord

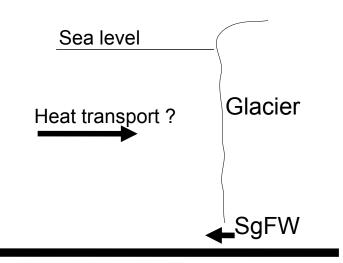
J. Bendtsen^{1,3}, J. Mortensen², K. Lennert² and S. Rysgaard^{2,3,4}

¹ClimateLab,; ²Greenland Climate Research Centre; ³Arctic Research Center, Denmark; ⁴ Center for Earth Observation Science, Canada.



Model domain

Transect of temperature from sill (left) towards the GrIS (right)

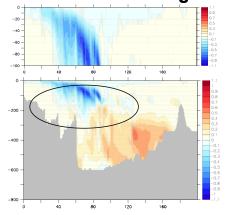

Modeling of intermediate water mass formation and subsurface heat transport in Godthåbsfjord

J. Bendtsen, J. Mortensen, K. Lennert and S. Rysgaard

Experiment 1: Reducing tidal mixing

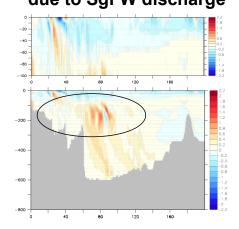
Observed and simulated water level

Experiment 2: Increasing SgFW



Conceptual figure of boundary conditions for subglacial freshwater discharge

Modeling of intermediate water mass formation and subsurface heat transport in Godthåbsfjord


J. Bendtsen, J. Mortensen, K. Lennert and S. Rysgaard

Results: Temperature change from reduced mixing

Temperature changes in SrW in late summer

Results: Temperature change due to SgFW discharge

Temperature changes in SrW in late summer