Staying Ahead of the Greenland Ice Sheet

Robert Bindschadler

CLIVAR-GRISO Workshop

June 4-7, 2013

Wylie Inn and Conference Center, Beverly MA

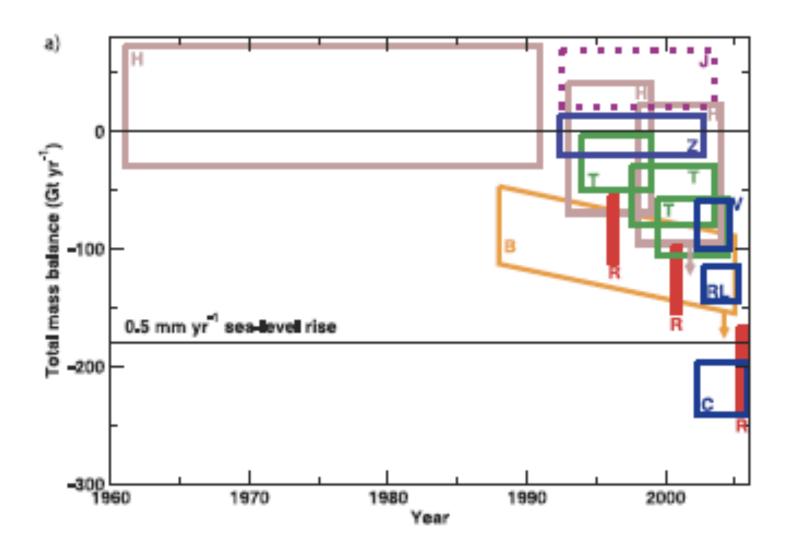
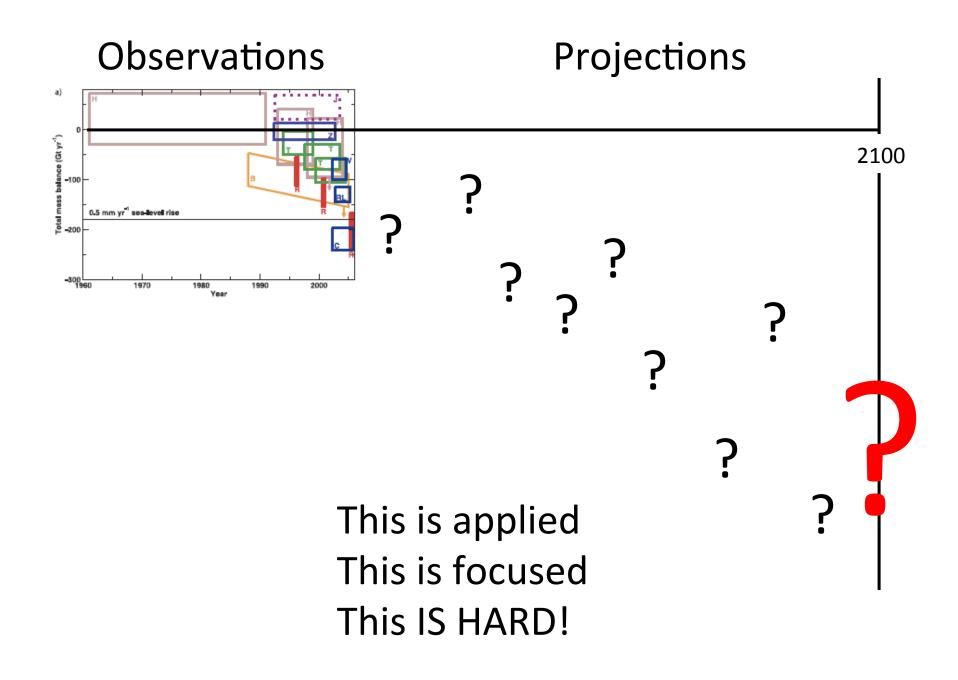



Figure 4.18a (IPCC AR4)

Austin Post (1922-2012)

- Glaciological visionary
- First to identify "drastic retreat" mode of tidewater glaciers

Humility

- You are bright but...
- Our ideas are not always the most important
- You may not do the research laid out here
- Can we be sure of the "knowns"?
- Can we be as sure of the "need to knows"?
- The "new" is not always the "important"
- Balance ambition with feasibility

My message has been "ice sheets hate water"

- Albedo darkening
- Cryo-warming (ice softening)
- Basal lubrication
- Basal melting/ice-shelf thinning
- Hydro-fracturing/ice-shelf disintegrating

Must consider Spatial and Temporal Response Scales

- Surface Mass Balance Change
 - Driven by change in accumulation or surface melting
 - Local mass change is immediate
 - Regional mass change is gradual
- Rheological Change
 - Driven by change in ice strength
 - Local and regional mass changes are gradual
- Stress Field Change
 - Driven by change in calving, basal melt or lubrication
 - Local mass change is quick
 - Propagation is rapid on thick, fast-moving, low slope ice (i.e., outlet glaciers)
 - Regional mass change for slower ice is gradual

It's all about future sea-level (1)

IPCC reports

- 1990: Time scale of ice sheet response too long for ice sheets to matter
- 1995: West Antarctic collapse mentioned as highrisk/low-probability event
- 2001: Report ignored feedback emphasizing importance of rapid ice sheet dynamic response
- 2007: Observed ice sheet dynamic response clearly identified as a major limitation to prediction of future sea level

It's all about future sea-level (2)

- Greenland Surface Mass Balance (SMB) contribution
 - ~50% of mass loss from 2000-2008 (van den Broeke et al., 2009)
 - modeled "acceptably well"
- Dynamics contribution
 - not well modeled
 - Potential to vastly exceed SMB component
 - Is the largest unknown in future sea level contribution in a warming world

Are the most significant ice mass losses driven by dynamic response to intrusion of warm ocean water in tidewater glacier outlets?

This workshop

U.S. CLIVAR: CLIMATE
VARIABILITY AND PREDICTABILITY

Built on this white paper

UNDERSTANDING THE DYNAMIC RESPONSE
OF GREENLAND'S MARINE TERMINATING
GLACIERS TO OCEANIC AND
ATMOSPHERIC FORCING

A WHITE PAPER
BY THE U.S. CLIVAR WORKING GROUP ON
GREENLAND ICE SHEET-OCEAN INTERACTIONS (GRISO)

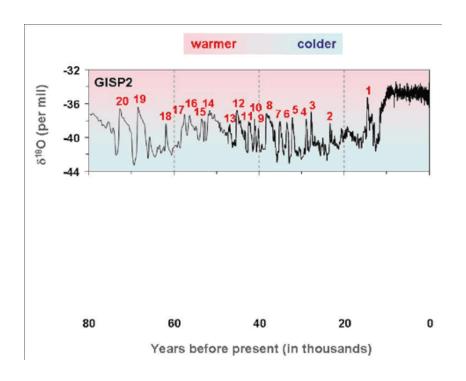
UNDERSTANDING THE DYNAMIC RESPONSE OF GREENLAND'S MARINE TERMINATING GLACIERS TO OCEANIC AND ATMOSPHERIC FORCING

BY THE U.S. CLIVAR WORKING GROUP ON GREENLAND ICE SHEET-OCEAN INTERACTIONS (GRISO

Proposed Mechanisms and Forcings

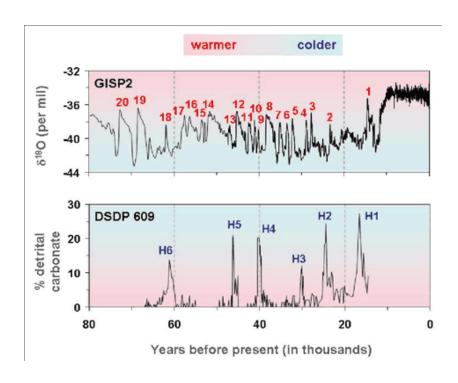
- i. Structural weakening of a floating ice tongue by thinning from excessive submarine melt [Motyka et al., 2011]
- ii. Decrease in backpressure exerted by a thinning, decreasing ice mélange leading to increased calving [Joughin et al., 2008; Amundson et al., 2010; MacAyeal et al., 2012]
- iii. Effects of the increased surface melting on the ice flow [Zwally et al., 2002; Joughin et al., 2008; see also Bell, 2008; Andersen et al., 2010; Hoffman et al., 2011]
- iv. Effects of the subglacial hydrological systems on ice flow [Pfeffer, 2007; Schoof, 2010; Sundal et al., 2011]
- v. Weakening of lateral shear margins due to cryohydrologic warming of subsurface ice [Phillips et al., 2010; van der Veen et al., 2011]
- vi. Hydro-fracturing and calving of the floating tongues leading to reduced buttressing [Sohn et al., 1998; Post et al., 2011]

U.S. CLIVAR: CLIMATE VARIABILITY AND PREDICTABILITY


UNDERSTANDING THE DYNAMIC RESPONSE
OF GREENLAND'S MARINE TERMINATING
GLACIERS TO OCEANIC AND
ATMOSPHERIC FORCING

A WHITE PAPER
BY THE U.S. CLIVAR WORKING GROUP ON
GREENLAND ICE SHEET-OCEAN INTERACTIONS (GRISO)

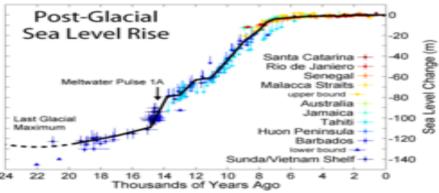
Three Triggering Mechanisms


- 1. Increased submarine melting a the ice/ocean interface (#i, #vi)
- 2. A reduction or weakening of the ice mélange in front of the glacier (#i, #ii)
- 3. Increased crevassing and reduced structural coherence and strength due to surface warming and increased surface melt (#iii, #iv, #v)
 - i. Structural weakening of a floating ice tongue by thinning from excessive submarine melt [Motyka et al., 2011]
 - ii. Decrease in backpressure exerted by a thinning, decreasing ice mélange leading to increased calving [Joughin et al., 2008; Amundson et al., 2010; MacAyeal et al., 2012]
 - iii. Effects of the increased surface melting on the ice flow [Zwally et al., 2002; Joughin et al., 2008; see also Bell, 2008; Andersen et al., 2010; Hoffman et al., 2011]
 - iv. Effects of the subglacial hydrological systems on ice flow [Pfeffer, 2007; Schoof, 2010; Sundal et al., 2011]
 - v. Weakening of lateral shear margins due to cryo-hydrologic warming of subsurface ice [Phillips et al., 2010; van der Veen et al., 2011]
 - vi. Hydro-fracturing and calving of the floating tongues leading to reduced buttressing [Sohn et al., 1998; Post et al., 2011]

The Past

Dansgaard-Oeschger events: Possibly caused by state change of thermohaline circulation

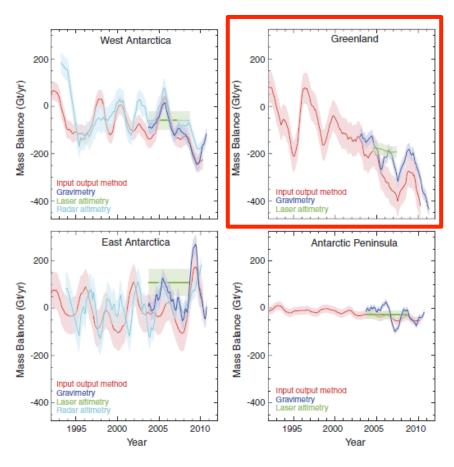

The Past



Dansgaard-Oeschger events: Possibly caused by state change of thermohaline circulation

Heinrich events: Cause uncertain but directly tied to a large mass loss of Greenland ice sheet

The Past

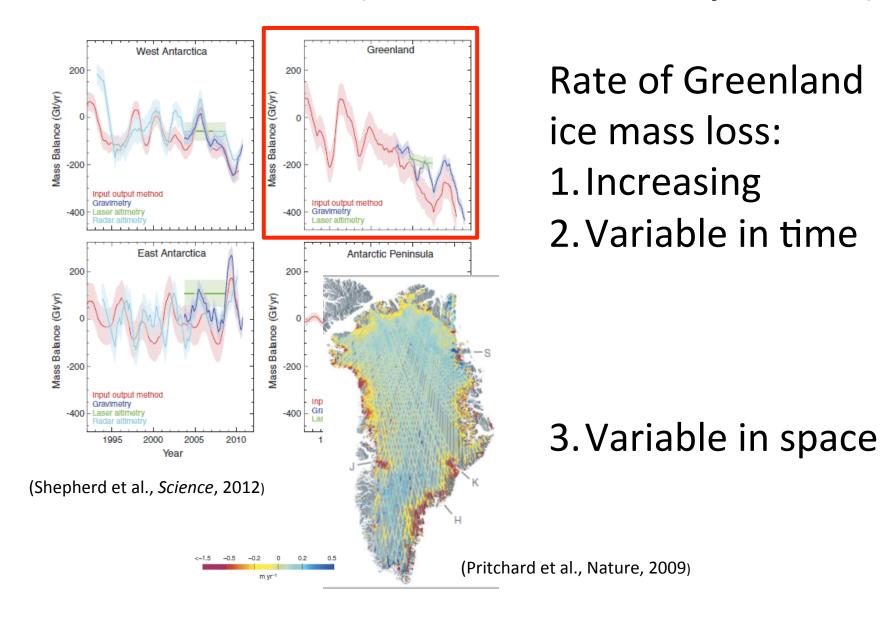


Dansgaard-Oeschger events: Possibly caused by state change of thermohaline circulation

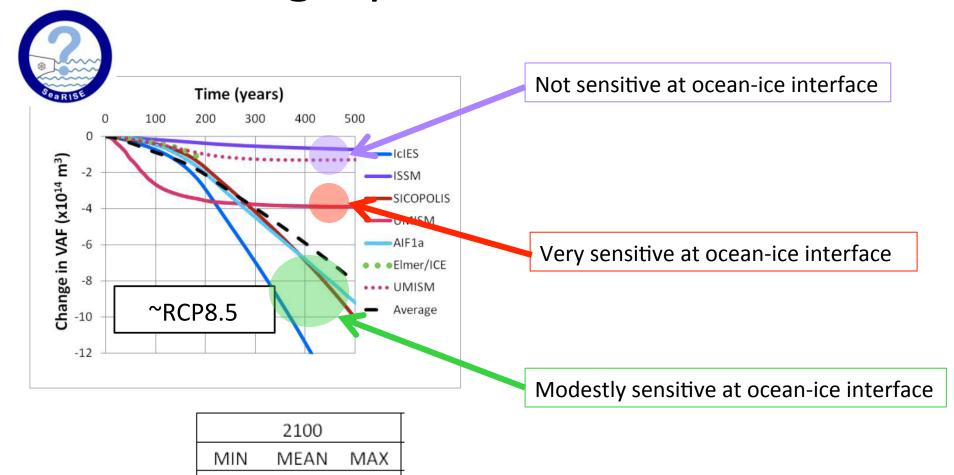
Heinrich events: Cause uncertain but directly tied to a large mass loss of Greenland ice sheet

Meltwater Pulses: Only large loss of land ice can explain sudden, large rise in sea level

The Present (observational period)



Rate of Greenland ice mass loss:

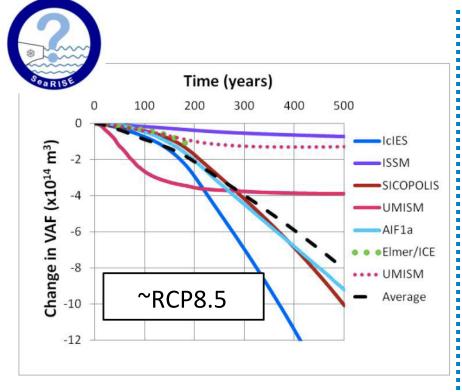

- 1. Increasing
- 2. Variable in time

(Shepherd et al., Science, 2012)

The Present (observational period)

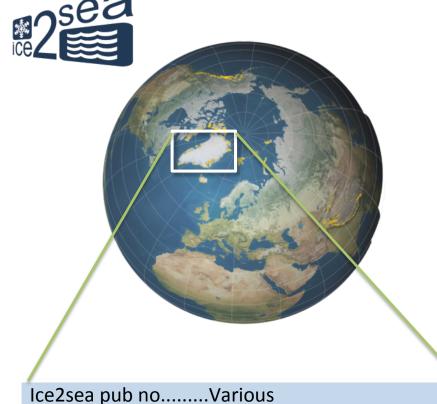
Seeking a predictable Future

Volume Above Floatation (VAF)


4.50

22.3

66.3 cm

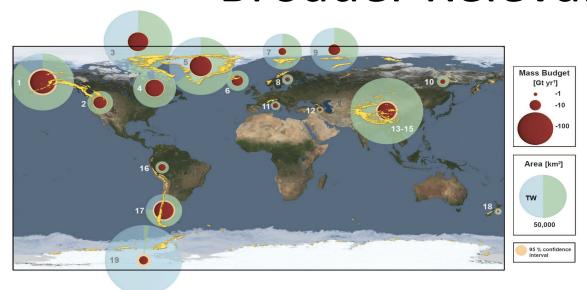

GREENLAND

Seeking a predictable Future

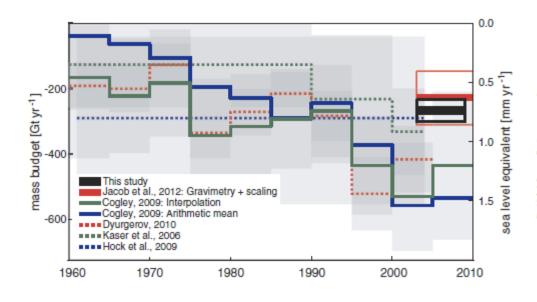
		2100		
	MIN	MEAN	MAX	
GREENLAND	4.50	22.3	66.3	cm

Volume Above Floatation (VAF)

Area.....Greenland ice sheet


Forcing.....4x RCP Scenarios

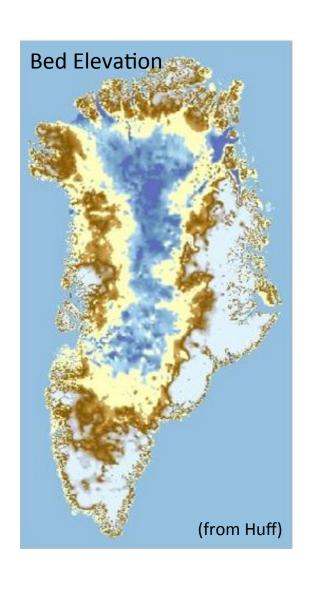
Modelling by.....VUB, ULB, CNRS, UL


SLR by 2100......0.5 – 18.3 cm

Dominant process....Atmospheric and dynamics

Broader Relevance

Tidewater glacier discharge (blue portion of circles) responsible for substantial fraction of all land ice loss

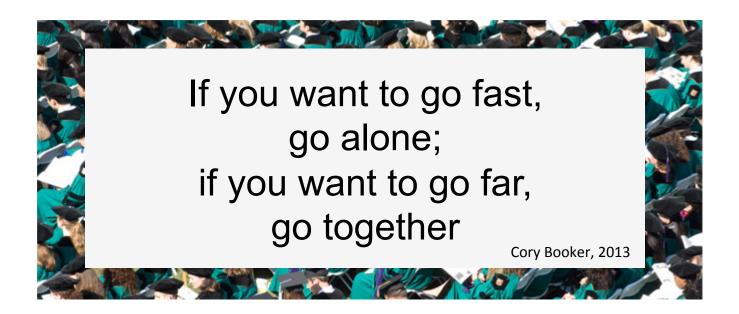


A Reconciled Estimate of Glacier Contributions to Sea Level Rise: 2003 to 2009

Alex S. Gardner,^{1,2,4} Geir Moholdt,³ J. Graham Cogley,⁴ Bert Wouters,^{5,6} Anthony A. Arendt,⁷ John Wahr,^{5,8} Etienne Berthier,⁹ Regine Hock,^{7,10} W. Tad Pfeffer,¹¹ Georg Kaser,¹² Stefan R. M. Ligtenberg,¹³ Tobias Bolch,^{14,15} Martin J. Sharp,¹⁶ Jon Ove Hagen,¹⁷ Michiel R. van den Broeke,¹³ Frank Paul¹⁴

(*Science*, 2013)

Limits are valuable


How much of Greenland is "ocean vulnerable?"

How fast can outlet glaciers deliver ice?

Do paleo-analogues work?

Washington University Commencement, May 17, 2013

- The present earth science research environment has become "highly-hyphenated"
- Disciplinary → Multi-disciplinary → Integrated
- Technological innovations have led to scientific discoveries
- Co-existence → Coordination → Cooperation →
 Collaboration

Other External Groups are listening

- SEARCH (Study of Environmental Change in the Arctic) and IASC
 - Goal #3 (of 4) Land-ice mass changes and future sea level
 - Near-term objectives focused studies of ocean-ice interaction at outlet glaciers
 - Working Group led by F. Straneo and T. Scambos
- IARPC (Interagency Arctic Research Policy Committee)
 - Chaired by OSTP
 - Members are funding agencies
 - 1 of 14 implementation teams focused on land ice (Landice and Landice observations: chaired by Bill Wiseman)

You are bright but...

2100

- You are here to do community work
- Challenge each other to be sure of the "knowns", the "need to knows" and the strongest methods to use
- "New" is not always the same as "important"
- Balance ambition with feasibility

Thank you for your attention