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Figure 4.18a (IPCC AR4)
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Austin Post (1922-2012)

* Glaciological visionary

* First to identify “drastic
retreat” mode of
tidewater glaciers




Humility

You are bright but...
Our ideas are not always the most important
You may not do the research laid out here

Can we be sure of the “knowns”?
Can we be as sure of the “need to knows”?

The “new” is not always the “important”
Balance ambition with feasibility



My message has been
“ice sheets hate water”

Albedo darkening

Cryo-warming (ice softening)

Basal lubrication

Basal melting/ice-shelf thinning
Hydro-fracturing/ice-shelf disintegrating



Must consider Spatial and
Temporal Response Scales

e Surface Mass Balance Change
— Driven by change in accumulation or surface melting
— Local mass change is immediate
— Regional mass change is gradual

* Rheological Change
— Driven by change in ice strength
— Local and regional mass changes are gradual

e Stress Field Change
— Driven by change in calving, basal melt or lubrication
— Local mass change is quick

— Propagation is rapid on thick, fast-moving, low slope ice (i.e.,
outlet glaciers)

— Regional mass change for slower ice is gradual



It’s all about future sea-level (1)

* |IPCC reports

— 1990: Time scale of ice sheet response too long
for ice sheets to matter

— 1995: West Antarctic collapse mentioned as high-
risk/low-probability event

— 2001: Report ignored feedback emphasizing
importance of rapid ice sheet dynamic response

— 2007: Observed ice sheet dynamic response
clearly identified as a major limitation to
prediction of future sea level



It’s all about future sea-level (2)

* Greenland Surface Mass Balance (SMB)
contribution

- NSO% Of Mass IOSS from 2000'2008 (van den Broeke et al., 2009)
— modeled “acceptably well”

* Dynamics contribution
— not well modeled
— Potential to vastly exceed SMB component

— |Is the largest unknown in future sea level contribution
in @ warming world

Are the most significant ice mass losses driven by dynamic
response to intrusion of warm ocean water in tidewater glacier
outlets?



Understanding the Response of Greenland’s
Marine Terminating Glaciers to Oceanic
and Atmospheric Forcing

Challenges to improving observations,
process understanding and modeling
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U.S. CLIVAR: CLIMATE
VARIABILITY AND PREDICTABILITY

Proposed Mechanisms and
Forcings

i.  Structural weakening of a floating ice tongue by thinning
from excessive submarine melt (motyka et al., 2011]

ii. Decrease in backpressure exerted by a thinning,

decreasing ice mélange leading to increased calving
[Joughin et al., 2008; Amundson et al., 2010; MacAyeal et al., 2012]

iii. Effects of the increased surface melting on the ice flow

[Zwally et al., 2002; Joughin et al., 2008; see also Bell, 2008; Andersen et al., 2010;
Hoffman et al., 2011]

iv. Effects of the subglacial hydrological systems on ice flow
[Pfeffer, 2007; Schoof, 2010; Sundal et al., 2011]

v. Weakening of lateral shear margins due to cryo-

hydrologic warming of subsurface ice (philips et al., 2010; van der
Veen et al., 2011]

vi. Hydro-fracturing and calving of the floating tongues
leading to reduced buttressing [sohn et al., 1998; Post et al., 2011]
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Increased submarine melting a the ice/ocean interface (#i, #vi)

A reduction or weakening of the ice mélange in front of the glacier (#i, #ii)
Increased crevassing and reduced structural coherence and strength due
to surface warming and increased surface melt (#iii, #iv, #v)

i. Structural weakening of a floating ice tongue by thinning from excessive submarine melt [Motyka et
al., 2011]

ii. Decrease in backpressure exerted by a thinning, decreasing ice mélange leading to increased
calving [Joughin et al., 2008; Amundson et al., 2010; MacAyeal et al., 2012]

iii. Effects of the increased surface melting on the ice flow [zwally et al., 2002; Joughin et al., 2008; see also Bell,
2008; Andersen et al., 2010; Hoffman et al., 2011]

iv. Effects of the subglacial hydrological systems on ice flow [pfeffer, 2007; Schoof, 2010; Sundal et al., 2011]

V. Weakening of lateral shear margins due to cryo-hydrologic warming of subsurface ice [phillips et al.,
2010; van der Veen et al., 2011]

Vi. Hydro-fracturing and calving of the floating tongues leading to reduced buttressing [sohn et al., 1998;

Post et al., 2011]
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The Past
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Heinrich events:

Cause uncertain but directly
tied to a large mass loss of
Greenland ice sheet
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Dansgaard-Oeschger events:
Possibly caused by state
change of thermohaline
circulation

Heinrich events:

Cause uncertain but directly
tied to a large mass loss of
Greenland ice sheet

Meltwater Pulses:

Only large loss of land ice
can explain sudden, large
rise in sea level



The Present (observational period)
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(Shepherd et al., Science, 2012)
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The Present (observational period)
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Seeking a predictable Future
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Seeking a predictable Future

2aR1S% Time (years)
0 100 200 300 400 500

e | C|ES

7| m—|SSM

e S|COPOLIS
e UM ISM
w AlF 12

. Imer/IC
. \ \\ e o oElmer/ICE

Change in VAF (x10'* m3)
()]

| « UMISM
o | ~RcCP8.5 \ S
-12 ‘ ‘

ice

2100
MIN  MEAN MAX
GREENLAND 4.50 22.3  66.3 |cm

Volume Above Floatation (VAF)

sed
=

Ice2sea pub no......... Various
Ar€a....cccoveeveeieesiienn, Greenland ice sheet
Dominant process....Atmospheric and dynamics
FOrcing....cccccvevevveennenn. 4x RCP Scenarios

SLR by 2100............... 0.5-18.3cm

Modelling by............. VUB, ULB, CNRS, UL




Broader Relevance

Tidewater glacier
discharge (blue
portion of circles)
responsible for
substantial fraction
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A Reconciled Estimate of Glacier

Contributions to Sea Level Rise:
2003 to 2009

Alex S. Gardner,™?* Geir Moholdt,? J. Graham Cogley,‘ Bert Wouters,** Anthony A. Arendt,’
John Wahr,>® Etienne Berthier,” Regine Hock, *° W. Tad Pfeffer,’* Georg Kaser,"

Stefan R. M. Ligtenberg,™® Tobias Bolch,**** Martin J. Sharp,*® Jon Ove Hagen,*’

Michiel R. van den Broeke,13 Frank Paul**

(Science, 2013)



Limits are valuable

How much of Greenland
is “ocean vulnerable?”

How fast can outlet
glaciers deliver ice?

Do paleo-analogues
work?




Washington University Commencement, May 17, 2013
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If you want to go fast,
go alone;
if you want to go far,
go together

Cory Booker, 2013
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The present earth science research environment
has become “highly-hyphenated”

Disciplinary = Multi-disciplinary = Integrated

Technological innovations have led to scientific
discoveries

Co-existence = Coordination = Cooperation 2
Collaboration



Other External Groups are listening

e SEARCH (Study of Environmental Change in the Arctic)
and IASC

— Goal #3 (of 4) Land-ice mass changes and future sea level

* Near-term objectives focused studies of ocean-ice interaction at
outlet glaciers

 Working Group led by F. Straneo and T. Scambos
* |ARPC (Interagency Arctic Research Policy Committee)
— Chaired by OSTP
— Members are funding agencies

— 1 of 14 implementation teams focused on land ice (Land-
ice and Land-ice observations: chaired by Bill Wiseman)



Humility (again)

You are bright but...
You are here to do community work

Challenge each other to be sure of the “knowns”,

the “need to knows” and the strongest méthods
to use

“New” is not always the same as “important”
Balance ambition with feasibility




Thank you for your attention



