Examining the relationship between low-frequency SST and AMOC variability

Martha W. Buckley and Rui M. Ponte (AER) Patrick Heimbach and Gaël Forget (MIT)

Observed Atlantic SST anomalies

- Observations indicate Atlantic SSTs exhibit significant low-frequency variability (Bjerknes 1964; Kushnir 1994; Ting et al. 2009).
 - e.g. Atlantic Multidecadal Oscillation (Kerr, 2000; Knight et al., 2005)
- The origin of Atlantic SST anomalies is not fully understood.
- Likely depends on timescale
 - Intra-annual to interannual: response to local atmospheric forcing (Frankignoul and Hasselmann, 1977), e.g. the NAO tripole (Cayan, 1992).
 - Longer timescales (how long?) ocean circulation may play a role.

Ocean dynamics that are important have not been isolated

- Wind and/or buoyancy forced baroclinic Rossby waves (Sturges and Hong, 1995, 1998; Qiu 2002; Piecuch and Ponte, 2012).
- Large scale changes in Atlantic ocean heat transport due to changes in the AMOC (Kushnir 1994, etc.) and gyre circulations.
- Lozier (2010): most significant question concerning the AMOC is (potential) role of AMOC in creating decadal SST anomalies.

Approach

What are relative roles of local atmospheric forcing and ocean dynamics in upper-ocean heat content (UOHC) variability in the North Atlantic?

Does the AMOC play an active role in creating UOHC anomalies?

Method: ECCO version 4 state estimate (1992-2010)

- MITgcm least squares fit to observations using adjoint (Wunsch et al., 2009)
- fit achieved by adjusting initial conditions, forcing, and model parameters
- satisfies equations of motion & preserves property budgets (Wunsch & Heimbach, 2013)
- Atmospheric forcing: ERA-Interim
- Ocean data:
 - In-situ: Argo, CTDs, XBTs, mooring arrays
 - AVHRR & AMSR-E SST and satellite altimetry
- Model details (G. Forget)
 - New global grid (LLC90), includes Arctic, 50 vertical levels, partial cells
 - Nominal 1° resolution with telescopic resolution to 1/3° near Equator
 - State of the art dynamic/thermodynamics sea ice model
- Fit to observations achieved by optimization—see poster, Forget et al, in prep.

Monthly AMOC and Atlantic OHT variability

Mean
ECCO: 16.0 Sv
RAPID: 17.5 Sv
Correlation 0.75
improves w/ time

- •RAPID: 1.2 PW
- ECCO systematically underestimates OHT
 Correlation: 0.81
- Note: Neither Florida current transports (cable observations) or RAPID AMOC transport estimates at 26°N are used as constraints in ECCO

Low-frequency Atlantic SST variability

- Analysis of monthly data, seasonal cycle removed
- Atlantic SST variability in ECCO similar to Reynolds (2002) gridded SST.
- Pattern resembles classic "NAO tripole"
- Spectrum is red: slope=-1.6

What are roles of:

- local atmospheric forcing
 - Air-sea heat fluxes
 - Ekman transports
 - versus ocean dynamics?
 - Rossby waves
 - Changes in gyre circulations and AMOC

Upper ocean heat content variability

m

 10^{3}

 10^{2}

10¹

- Heat Content integrated over max. climatological mixed layer depth
 - Measure of heat contained in "active" ocean layers
 - Implicitly accounts for re-emergence of SST anomalies (Deser et al, 2003; Coetlogon and Frankignoul, 2003)

$$H = \rho_o C_p \int_{-D}^{\eta} T \, dz$$

Max climatological mixed layer depth

Relationship to AMOC variability

 H variability is associated with AMOC variability. Is AMOC variability passive thermal wind response to H variability or does AMOC play role in H budget in some regions (e.g. Gulf Stream)?

Upper ocean heat content budget

Advection is important in creating H_t variability along the Gulf Stream Path and in regions in the subpolar gyre

Origin of advective heat transport convergence

 $\mathbf{u}_{\mathbf{g}}$

 $\mathbf{u}_{\mathbf{ek}}$

 10^{4}

10³

 10^{2}

10⁴

10³

 10^{2}

$$C_{adv} = \underbrace{-\rho_o C_p \int_{-D}^{\eta} \nabla \cdot (\bar{\mathbf{u}}\overline{T}) \, dz}_{\text{linear: } C_{lin}} \underbrace{-\rho_o C_p \int_{-D}^{\eta} \nabla \cdot (\bar{\mathbf{u}}'\overline{T'} + \bar{\mathbf{u}}^*\overline{T}) \, dz}_{\text{bolus: } C_{bol}}$$

$$C_{ek} = \rho_o C_p \int_{-D_{ek}}^{\eta} \nabla \cdot (\bar{\mathbf{u}}_{ek}\overline{T}) \, dz + \rho_o C_p \, \overline{w}_{ek}(-D) \, \overline{T}(-D)$$

$$C_g = \rho_o C_p \int_{-D}^{\eta} \nabla \cdot (\bar{\mathbf{u}}_{g}\overline{T}) \, dz + \rho_o C_p \, \overline{w}_{g}(-D) \, \overline{T}(-D)$$

Linear Ekman and geostrophic convergences

70°N

60°N

50°N

40°N

30°N 20°N

70°N

60°N

50°N

40°N 30°N

20°N

100°V

100°\

Variance
$$C_{iin}$$

Variance $C_{ek} + C_{g}$
 $Variance C_{ek} + C_{g}$
 $Variance C_{g}$
 $Variance$

$$\mathbf{u_g} = \frac{1}{f\rho_o} \hat{\mathbf{z}} \times \nabla p,$$

$$\mathbf{u_{ek}} = \frac{\tau \times \hat{\mathbf{z}}}{\rho_o f D_{ek}}, \ D_{ek} = \min(D, 100 \text{ m})$$

$$w(-D) \approx \int_{-D}^{\eta} \nabla_H \cdot \mathbf{u} \ dz$$

$$\approx \underbrace{\int_{-D_{ek}}^{\eta} \nabla_H \cdot \mathbf{u_{ek}} \ dz}_{\equiv w_{ek}(-D)} + \underbrace{\int_{-D}^{\eta} \nabla_H \cdot \mathbf{u_g} \ dz}_{\equiv w_g(-D)}$$

- C_{adv} is well reproduced by C_{lin} in most regions
- C_{ek}+C_g≈C_{lin}
- Both C_{ek} and C_g largest in regions of strong currents/fronts
- C_{ek} also significant over gyre interiors

Role of Local Air-Sea Heat Flux + Ekman forcing

$$F(A,B) = 1 - \frac{var(A-B)}{var(A)}$$

- Local Atmospheric Forcing explains >70% of variance of H_t in interior of the subtropical and subpolar gyres.
- Geostrophic convergence important along Gulf Stream path.

Regional budgets: fluxes

- C_{loc} dominates on all timescales
- 2) Gulf Stream
 - \succ C_{loc} dominates for τ <6 mo
 - C_g increasing role on longer timescales
- 3) Subpolar gyre
 - > C_{loc} Dominates for $\tau < 1$ yr
 - $\label{eq:cg} \begin{array}{l} & \textbf{C}_{g} \text{ , } \textbf{C}_{diff_{,}} \textbf{C}_{bol} \text{ all play a role} \\ & \text{ for } \tau \text{> 1 year} \end{array}$

Regional budgets: time integrated

Conclusions

- Heat content integrated over the climatological mixed layer depth
 H is a useful measure of the ocean's upper-ocean heat content.
- Both advection and air-sea heat fluxes play a role in variability in H_t, the tendency of H.
- Method of approximating the advective heat transport convergence as the sum of the Ekman and geostrophic transports is successful over most of subtropical and subpolar gyres.
 - Exceptions: boundary regions of subpolar gyre, Mann Eddy region, region near Gulf Stream separation
- Over the interior of the subtropical and subpolar gyres >70% of the variance of H_t can be explained by local air-sea heat flux + Ekman transport variability.
- Geostrophic convergence plays a role along Gulf Stream Path.

Preliminary Conclusions (cont.)

- Importance of various terms in variance of H_t depends on timescale (see poster)
 - Subtropical gyre: local forcing dominates on all timescales.
 - Gulf Stream: local forcing dominates for periods less than 6 months; geostrophic convergences increasingly important on longer timescales.
 - Subpolar gyre: local forcing dominates for periods less than 1 year; geostrophic transports, bolus transports, and diffusion play a role on longer timescales.
- Temporally integrated budgets emphasize terms important in H variability
 - Subtropical gyre: majority of H variance explained by local forcing
 - Gulf Stream region: geostrophic transports also important, anticorrelated with air-sea heat fluxes, suggesting H variability is forced by geostrophic convergences and damped by air-sea fluxes.
 - Subpolar gyre: diffusion and bolus transports also important

Future work

- Determine origin of geostrophic convergence anomalies over the Gulf Stream path
 - Shift of Gulf Stream path due to remote wind forcing?
 - Change in strength of deep western boundary current?
- Better understand origin of low-frequency variability of diffusion and bolus transports in the subpolar gyre—appear to be related to lowfrequency variability of wintertime mixed layer depths.
- H variability is associated with AMOC variability. Is AMOC variability passive thermal wind response to H variability or does AMOC play role in H budget in some regions (e.g. Gulf Stream)?
- Analysis has isolated regions where more complex dynamics are important in H budgets—e.g. diffusion and bolus transports are important in Mann Eddy region. Explore dynamics of these regions.