Sub-daily to seasonal and submesoscale to mesoscale processes and interaction with ocean biology

Amala Mahadevan Woods Hole Oceanographic Institution

Histogram of surface chlorophyll from MODIS 2003-2010 (9 km daily) 25 N Jonsson et al. (in prep)

Histogram of surface chlorophyll from MODIS 2003-2010 (9 km daily) Jonsson et al. (in prep)

2. Subpolar Gyres strong seasonality: light, MLD variation

What dynamics underlie this variability?

3. Coastal Margins strong horizontal gradients

1. Subtropical Gyres

weak horizontal gradients, low seasonality

Tuesday, July 19, 2011

When physics (advection) is important $L \sim Ut$

Submesoscale

 $L \sim O(0.1 - 10 \, km), \ t \sim O(days)$

(~ Biological time scales)

Mesoscale $L \sim O(10 - 100 \text{ km}), t \sim O(weeks - months)$

What dynamics underlie this variability?

PHYSICS —

Supply of nutrients / Exposure to light

Blooms occur when nutrient and light limitation are overcome

Variability: Physically or biologically mediated?

$$\frac{\partial P}{\partial t} + \mathbf{u} \cdot \nabla P = \mu P,$$
$$t_{phy} = \frac{L}{U} \text{ or } \frac{D}{W}$$
$$t_{bio} = \frac{1}{\mu}$$

where $\mu = \mu(I, N)$

Physics: Horizontal or vertical advection?

 $t_{bio} \gg t_{phy}$

Subtropical Gyres

46N

Mesoscale eddies stir the phytoplankton

441

43N

421

~1000 km² mg/m3 Seawifs 22 Nov 1997 0137Z chloroph But vertical nutrient fluxes dominated by submesoscale frontal processes

45N

a) Particles, May 29 1999

c) Particles, July 7 1999

Lehahn et al. (2007)

20W

19W

Composite of SST fronts Ulman and Cornillon (1995)

Tuesday, July 19, 2011

Submesoscale upwelling?

At higher (1 km) model resolution, we find that:

The largest vertical velocities O(100m/day) occur where the Rossby number becomes O(1). Circulation not in geostrophic / thermal-wind balance -- has a large vertical component.

Tuesday, July 19, 2011

Mesoscale Experiment 480 km x 960 km (5 km grid resol)

Tuesday, July 19, 2011

An (over-simplified) model for nutrient and phytoplankton production

Nutrient-like tracer and phytoplankton

Evolution of phytoplankton distribution with time?

Tuesday, July 19, 2011

Tuesday, July 19, 2011

JGR

N. Atlantic Bloom 2008 D'Asaro, Perry, Fennel, Lee

No Nutrient Limitation Yr Day 95-145 Alkire et al. (submitted)

200

Blooms: Growth rate becomes large

8 um

Winter: Mixed layer is deep and the average light in the mixed layer is low Spring: Mixed Layer Shallows and the average light is higher

Sverdrup critical depth hypothesis

 $\begin{array}{lll} \mbox{Production rate} & P(z) = \alpha I_0 \exp(-kz) & \mbox{Respiration rate} & R(z) = R_0 \\ \mbox{Critical depth} & z_{cr} \mbox{ where } & \hline \int_0^{z_{cr}} P(z) dz = \int_0^{z_{cr}} R_0 dz \end{array}$

Satellite Chl (south of Iceland) 2008

Restratification of the mixed layer by eddies

Fox-Kemper et al., 2008

Fronts → Eddies → Restratification → More ave light → Bloom

Does eddy restratification matter?

(area averaged) time series from model

Tuesday, July 19, 2011

High vorticity and strain rate in submesoscale filaments

Upwelling occurs on the lighter side of the front. Filaments emanate from the denser side- support strong export.

Advection and biological growth - affect variability Submesoscale physics has a significant impact

- strong vertical velocities
- restratification
- filaments strong lateral and vertical advection

Biological vs. physical variability How can these be separated?

Discussion

Should we care about variability if we are interested in the big picture (climate) ?

Submesoscale processes contribute to biogeochemical fluxes

In creased productivity in limited region studies -

but Global to basin scale X (Levy et al., 2011)

Nonlinear interactions

 $\overline{p'q'} \neq \overline{p'} \ \overline{q'}$

Chl has a lognormal distribution (indicative of multiplicative processes) Mean is not a good representation

Parameterize biogeochemical eddy fluxes?

Discussion

Biological / physical variability - Lagrangian approaches
Vertical structure of variability is important
Other biogeochemical properties - CO2, O2, ...
Grazing - variability exercised from top-down control
Community structure (auto-/hetero-trophic)
Export is highly variable

Vertical structure important - light / nutrients / mixing ChI (color), Nutricline (black line), MLD (red line) - Cariaco Basin

(Omand et al., in prep)

Other biogeochemical properties - pCO2

pCO2 change due to localized upwelling positive (red), negative (blue)

Mahadevan et al., 2010

+5%