CPT: Representing internal-wave driven mixing in global ocean models
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Overview

|. Most diapycnal (vertical) mixing in the ocean interior is due to
breaking internal gravity waves

2. Mixing is patchy in space and time, reflecting the complex
geography of internal wave generation, propagation, and
dissipation.

3. Patchy mixing matters for ocean circulation and fluxes. It’s
important to “‘get it right”.

4. Our plan: use what we collectively know about internal wave
physics to develop a dynamic parameterization of diapycnal
mixing that can evolve in a changing climate.
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-¢ Two frequencies dominate energetically
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Two frequencies dominate energetically
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Near-inertial waves: often wind generated,
have a frequency close to the local inertial
frequency (latitude dependent)
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Two frequencies dominate energetically

Depth, z

Near-inertial waves: often wind generated,
have a frequency close to the local inertial
frequency (latitude dependent)

Horizontal distance (x,y)

Internal Tides: generated by oscillatory
tidal flow over topography.Vaves have
tidal (often M2=12.4 hour) period
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Parameterizing mixing

Cant’ explicitly resolve internal waves in climate models.
3 steps to parameterize their role:

|) Wave generation

Internal-Tide Generation
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Cant’ explicitly resolve internal waves in climate models.
3 steps to parameterize their role:

Brazil Basin

| ) Wave generation

2) Some waves break “locally™

Water depth (m)

Internal tides propagating up
from the rough (eastern)

bathymetry steadily break, e tihelibnat bupt dae HEn SV bt Bl ot o
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Global pattern of mixing that mirrors wave generation
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St Laurent et al 02
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iXing

“Farfield” wave breaking / m

Most (70-90%) internal tide energy escapes to propagate thousands of km away.

Where do these waves break!? [St. Laurent and Nash 04]

Altimetric tidal fluxes

Zhongxiang Zhao, UW

Southbound

Northbound
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Cant’ explicitly resolve internal waves in climate models.
3 steps to parameterize their role:

|) Wave generation

2) Wave propagation Harper Simmons
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Parameterizing mixing

Cant’ explicitly resolve internal waves in climate models.
3 steps to parameterize their role:

| ) Wave generation

2) Wave propagation Harper Simmons
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Cant’ explicitly resolve internal waves in climate models.
3 steps to parameterize their role:

|) Wave generation

2) Wave propagation

Thursday, July 8, 2010



Parameterizing mixing

Cant’ explicitly resolve internal waves in climate models.
3 steps to parameterize their role:

|) Wave generation

2) Wave propagation

Propagating waves steadily lose energy due to interaction with
PLANNED other internal waves and mesoscale eddies. Apply existing wave-

WORK wave interaction theory to develop a map of dissipation for low-
mode internal waves
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Turbulent mixing makes the ocean go round

< ® Turbulence occurs at small scales:cm to m

® Determines large scale vertical transport
of heat, C02, nutrients, etc.

downward HEEREEES

|
s

® Drives meridional overturning circulation

diffustion (K) & SN : :
é ﬁ internal tide by creating potential energy.
.,A |

~1TW

Low Latitudes High Latitudes

nature (may 2007) d
Churn, churn, churn

How the oceans mix their waters is key to understanding future climate change. Yet scientists {
have a long way to go to unravel the mysteries of the deep.
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Turbulent mixing makes the ocean go round

Low Latitudes High Latitudes

simmons et al
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Fig. 5. Diapycnal mass flux (w*) through the 3300 m depth level.

simmons et al
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Changing strength of global overturning

Expectation: freshwater flux will slow down MOC. But if mixing
increases in a windier climate, maybe not (Schmitt et al, Ocean Obs)
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Changing strensth of regional overturnin

Palmer et al 07: Modeled Indian Ocean overturning streamfunction

Constant kK = [.2 10 Bottom enhanced diffusivity
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Zonal mean Atlantic temperature bias
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rough topography
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Patchiness of Upper Ocean Mixing matters

Successful application of wave-wave
interaction theory: breaking of ambient
internal wave field scales with latitude

because of changing internal wave

frequency band (f<wW<N).

Depth of sigma = 26.4 Bias (m) with Low Equatorial
Diffusivity (Coupled) Yr 150

Modeled
implication

3

. Latitude
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Observational confirmation
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Depth of sigma=26.4 Difference (m) with Low Equatorial
| Diffusivity (Coupld) Yr 150

, Latitude

C.l. = 10m Longitude Avg = -28.0 m

Harrison and Hallberg 08



Planned VWork

Dynamics of wave breaking

® observations
* process modeling

* theory

Postdoc

Global wave modeling

* high-resolution
e tide and wind-forced
e w/ or w/o mesoscale

Global climate modeling

* high-resolution
¢ tide and wind-forced
e w/ or w/o mesoscsale
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