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Goal: Development of ocean mixing
parameterizations for use in representing
internal wave driven mixing in climate
simulations.

|) Near-field parameterizations accounting for
mixing processes at internal wave generation sites

2) A new parameterization for the mixing resulting
from the breakdown of near inertial energy
transported in the wave field

3) Parameterization for the breakdown of internal
wave energy in the ocean interior far away from
sources.
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Overview

|. Most diapycnal (vertical) mixing in the ocean interior is due to
breaking internal gravity waves

2. Mixing is patchy in space and time, reflecting the complex
geography of internal wave generation, propagation, and
dissipation.

3. Patchy mixing matters for ocean circulation and fluxes. It’s
important to “get it right”.

4. Our plan: use what we collectively know about internal wave
physics to develop dynamic parameterizations of diapycnal
mixing that can evolve in a changing climate.
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® |ow-mode ~interfacial waves

® High-mode ~ plane waves

® Rapid: | <w <N

® Breaking waves are at small
(1-10 m) scales

Wednesday, July 20, 2011



Depth, z

Horizontal distance (x,y)

<>

Internal Tides: generated by
oscillatory tidal flow over
topography.Waves have tidal
period (M2=12.4 hour)

[ ]
NAVES 111 LI1C OCccan -

Two frequencies dominate energetically

Near-inertial waves: often wind generated,
have a frequency close to the local inertial
frequency (latitude dependent)

Near-inertial Internal Tides

L \\

Observed (CW) ~~

Model (CW)
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Cant’ explicitly resolve internal waves in climate models.
3 steps to parameterize their role:

|) Wave generation
2) Wave propagation

L rrer Near-Inertial VWaves
3) Wave dissipation
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Cant’ explicitly resolve internal waves in climate models.
3 steps to parameterize their role:

|) Wave generation
2) Wave propagation
3) Wave dissipation

Near-Inertial VWaves
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Internal Tides
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Internal Tides
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Parameterizing mixing

Cant’ explicitly resolve internal waves in climate models.

3 steps to parameterize their role:
|) Wave generation

Maps of Internal-Tide Generation

Data inversion from Direct estimate from
TPXO Tidal tidal/oceanographic
assimilation parameters
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Maps of Near-Inertial VWave Generation

o
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N.B., strong dependence on the wind forcing employed!
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Parameterizing mixing

Cant’ explicitly resolve internal waves in climate models.

3 steps to parameterize their role:
|) Wave generation :

500

Brazil Basin

!

3) Wave dissipation
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Water depth (m)
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Polzin et al.97

Global pattern of mixing that mirrors wave generation
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“Farfield” wave breaking / mixing

Most (70-90%) internal tide energy escapes to propagate thousands of km away.

Where do these waves break!? [st. Laurent and Nash 04]

Altimetric tidal fluxes

Northbound

Zhongxiang Zhao, UW
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Desirable Properties of Parameterizations

* Energy-based prescriptions are more likely to avoid
physical inconsistencies.

* Should use model’ s own properties (e.g., stratification) for

calculating the energy conversion to allow for negative
feedbacks on mixing.

=  Static maps can get scary when the control the ocean structure.

* Energy fluxes (and hence buoyancy fluxes) should respond
to the changing model state.

» Vertically elliptic or 1terative equations are O.K.;
Horizontally elliptic equations, iterations, or large numbers
of wavenumber bins will be a challenge.

e Minimize dimensional “parameters’ wherever possible.

» Should work across a range of model resolutions.
(1° - 1/8° climate models now.)
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Turbulent mixing helps make the ocean go round

Low Latitudes High Latitudes

Some more complex implementation in more complex models ==
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Turbulent mixing helps make the ocean gso round

Low Latitudes High Latitudes

60°E 120°E 180°W 120°W 60°W

Fig. 5. Diapycnal mass flux (w*) through the 3300 m depth level.

Some more complex implementation in more complex models ==
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St. Laurent et al 02
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St. Laurent et al 02

parameterized diffusivity K, :oL m®s™)
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St. Laurent et al 02 vertical

parameterized diffusivity K, :oL m®s™)
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St. Laurent et al 02

lonaitude

HEZANINISBH  Develop a vertical decay scale based on nonlinear
WORK dynamics of wave interaction and breaking

HEZANINISBPH  Develop a similar representation for elevated
WORK mixing in the upper ocean under storm tracks
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Zonal mean Atlantic temperature bias

CM2.1 Atlantic Potential Temperature Bias Years 181-200
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Patchiness of Upper Ocean Mixing matters

Successful application of wave-wave
interaction theory: breaking of ambient
internal wave field scales with latitude
because of changing internal wave
frequency band (f<W<N).

GFDL modeled implications
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Present Progress

Continued process-oriented GCM analysis & data comparisons:
Simmons/Alford, this talk.

GCM investigation of energetically constrained, spatially variable mixing:
Jochum-NCAR - Implementation of NIW parameterization --
Upside down version of St. Laurent et al (2002)

Hallberg, Legg & Griffies (GFDL) - tidal and other contributions to
spatial variable & topographically controlled
mixing --this talk
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Planned Work

Dynamics of wave breaking

® observations
* process modeling

* theory

Global wave modeling

* high-resolution
¢ tide and wind-forced
e w/ or w/o mesoscale

Global climate modeling

* high-resolution
¢ tide and wind-forced
e w/ or w/o mesoscsale
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Four CPT postdocs hired this year:

Oliver Sun (WHOI): Analysis of wave-mean flow interactions
(Polzin et al.) applied to Equatorial wave guide.

Angelique Melet (GFDL): Effects of spatially and temporally
varying ocean mixing, parameterizing the effects of internal
wave processes on the mean watermass structure,
circulation and variability of realistic coupled and ocean-only

climate models.

Amy Waterhouse (SIO): Consolidating available data to develop
a comprehensive global map of internal wave energy levels

and mixing.

Joseph Ansong (UMich): Process studies of directly resolved
internal wave dynamics in eddy resolving GCMs
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