

Cloud Macrophysical Parameterization and Aerosol Indirect Effects

Supported by

Published estimates of the aerosol indirect effect

Anthropogenic changes in net radiation at the TOA

State of play

Figure from Trude Storelvmo, in Isaksen et al. (Atmos. Env., 2009)

Our CPT's participating institutions:

- U. Wisconsin, Milwaukee (Cloud parameterization: V. Larson, Lead PI)
- GFDL (SCM and GCM simulations: L. Donner, J.-C. Golaz, Y. Ming, H. Guo)
- NCAR (SCM and GCM simulations: A. Gettelman, H. Morrison, P. Bogenschutz)
- NOAA ESRL (LES: G. Feingold, T. Yamaguchi, S-S. Lee)
- JPL (Satellite obs: G. Stephens, M. Lebsock, T. Kubar)
- U. Washington (Aircraft and satellite obs: R. Wood, D. Grosvenor)

Dynamics-Based PDFs for Cloud Parameterization: Motivation

- Moisture-based PDFs are not linked to dynamics of cloud formation and dissipation.
- Key microphysical processes like droplet activation are closely linked to vertical motions.
- Aerosol-cloud interaction: An example.

Observed dependence of cloud droplets on aerosols

Clean/Maritime

Source: Ramanathan et al. (Science, 2001)

figure Robert Simmon, NASA

Linking Cloud Macrophysics and Microphysics in Stratiform Clouds

Activated Droplet Number

cf., Ming et al. (J. Atmos. Sci., 2006)

Large-scale CCN activation

Activated Droplet Number

400

5.0 μg m³ (sulfate)

200

100

-10

-5

0

5 10

w (m/s)

Layer-averaged activation:

$$\overline{N}_{\text{activation}} = \int N^* (w, p, T) \ dx \, dy$$

Because N* is non-linear

$$\overline{N}_{\text{activation}} \neq N^* \left(\overline{w}, \overline{p}, \overline{T} \right)$$

However,

$$\overline{N}_{\text{activation}} \cong \int N^* (w, \overline{p}, \overline{T}) \, p df(w) \, dw$$

Building a PDF-based parameterization

Advance prognostic moment equations

$$\overline{w}$$
, $\overline{\theta_l}$, $\overline{q_t}$, $\overline{w'^2}$, $\overline{w'^3}$, $\overline{q_t'^2}$, $\overline{\theta_l'^2}$, $\overline{q_t'\theta_l'}$, $\overline{w'q_t'}$, $\overline{w'\theta_l'}$

Use PDF to close higher-order moments, buoyancy terms

$$\overline{w'q_t'^2}$$
, $\overline{w'\theta_l'^2}$, $\overline{w'q_t'\theta_l'}$, $\overline{w'^2q_t}$, $\overline{w'^2\theta_l'}$, $\overline{w'^2\theta_l'}$, $\overline{w'^4}$, $\overline{q_t'\theta_v'}$, $\overline{\theta_l'\theta_v'}$, $\overline{w'\theta_v'}$, $\overline{w'^2\theta_v'}$

Δt

Adapted from Golaz et al. 2002a,b (JAS)

Diagnose cloud fraction, liquid water, droplet number from PDF

Dynamics-PDF Cloud Parameterization: Overview

- Based on Golaz et al. (2002, J. Atmos. Sci.): "CLUBB" (Cumulus Layers Unified by Bi-Normals)
- Joint PDFs for vertical velocity, liquid potential temperature, and total water mixing ratio
- Single-column model tests for BOMEX and DYCOMS-II field programs

Dynamics PDF Parameterization for Stratiform Clouds and Turbulence

- Fit liquid potential temperature, total water, vertical velocity PDFs for range of Cu and Sc PBLs to LES simulations
- LES evaluated using GCSS WG 1 cases (ARM, ATEX, BOMEX, DYCOMS-II RF01 & RF02, FIRE, RICO)
- Prognostic equations for higher-order moments
- Seamlessly select PDF forms based on evolution of higher-order moments
- Diagnose cloud macrophysics (fraction, liquid content, etc.) from PDFs

CPT Goals

- Chief deliverable: implementation of CLUBB within NCAR and GFDL GCMs
- Couple CLUBB with microphysics scheme
- Investigate aerosol indirect effects (AIEs) in sensitivity studies using large eddy simulation, aircraft/satellite data, and CLUBB => use to improve PDF scheme representation of AIEs
- Develop toolkit for testing GCM based on relevant satellite datasets

Activities during first year – CLUBB SCM

- Continued testing and refinement of single column (SCM) version of CLUBB using observational cases
 - Existing case studies (DYCOMS, ATEX, BOMEX, RICO). Paper published by Guo et al. (2010, GMD)
 - VOCALS RF06 case study prepared and simulated with LES (Wang et al. 2010)
 - VOCALS ship-observed cases being prepared
- Exploration of CLUBB-SCM responses to aerosol perturbations
 - Ability to reproduce complex responses (LWP increasing and decreasing depending upon meteorological conditions)
 - Guo et al. (2010, and 2011: Geophys. Res. Lett., submitted)

Five warm cloud cases

```
Non-precipitating | BOMEX (cumulus)

DYCOMS-RF01 (stratocumulus)

ATEX (cumulus-under-stratocumulus)
```

```
Precipitating 

RICO (cumulus)

DYCOMS-RF02 (stratocumulus)

VOCALS RF06 (stratocumulus, open cells)
```


From Guo et al. (2010, Geosci. Model Dev.)

AM3 SCM using multivariate PDF with dynamics, aerosol activation, and double-moment microphysics

from *Guo* et al. (2010, *Geosci*. *Model Dev*.)

Solid: CLUBB

Dashed: LES from Ackerman *et al.* (2004, *Nature*)

GFDL CPT Progress: AM3-CLUBB

0.9

0.82 0.74

0.66

0.58 0.5

0.42

0.34

0.26

0.18

0.1

ANN LOWCLD (Amt)

c48L48_am3p9_cl03c_1500

- CLUBB incorporated into GFDL GCM (AM3)
 - CLUBB replaces AM3 largescale cloud, PBL and shallow convection schemes.
 - Initial results in April
 - Performed several two decade-long AMIP experiments
 - Computational cost of CLUBB is relatively modest (10-15% of total CPU time)
 - Working on improving coupling with other physics parameterizations (deep convection, micro-physics)

NCAR CPT Progress: CAM-CLUBB

Vertically integrated low cloud fraction from a one year simulation of CAM-CLUBB

- CLUBB implemented into CAM5
 - Replaces existing UW eddy scheme, shallow convection, and macrophysics
 - Single-column tests on several GCSS cases yields promising results compared to LES
 - Preliminary one-year simulation produces encouraging results in the representation of boundary layer clouds, but more progress is needed to match CAM-5

Activities during first year – Large eddy modeling

- Assessment and development of WRF as a large eddy model
 - Model initialization and equilibration for soundings that include clouds
 - Sensitivity of solutions to acoustic time-stepping
 - Statistical package for WRF-LES output
- Simulation of aerosol influences on trade cumulus clouds (RICO)
 - The role of aerosol on preconditioning
- Simulation of stratocumulus clouds (VOCALS)
 - Initialization with ship-based soundings

Activities during first year – Satellites

- Warm cloud precipitation retrievals from CloudSat nearing completion
 - First climatology of warm rain assembled for comparison with GCMs
- MODIS cloud droplet concentration (N_d) climatology
 - Evaluation of MODIS N_d estimates against observations
 - Produced quality-controlled climatology
 - Preliminary comparisons with CAM-5

Distribution of Warm Rain from CloudSat (JPL)

- New retrievals focused on precipitation from boundary layer clouds
- Rain rate dominated by frequency of occurrence, not intensity
- Accumulation maxima:
 - East-Pac ITCZ
 - Trade Cumulus regions

Using MODIS cloud droplet concentration to constrain GCM microphysics (U Washington)

- Use method of Boers and Mitchell (1996), applied by Bennartz (2007)
- Screen to remove heterogeneous clouds by insisting on CF_{liq}>0.6 in daily L3
- Cloud top droplet concentration in warm clouds from CAM-5

- CAM-5 broadly captures landocean contrasts in N_d
- Opposite sign of seasonal cycle over NH land (MODIS>CAM in winter; MODIS<CAM in summer)
- Clear evidence of S. African and S.
 American biomass burning in MODIS and CAM

Plans for Year 2

- CLUBB SCM and LES work
 - Through collaboration with DoE FASTER, extensive SCM comparisons with ARM field observations (GFDL).
 - Development CLUBB microphysics including prognostic rain treatment and sub-column generation (NCAR, UWM, GFDL)
 - Simulation of VOCALS stratocumulus clouds and comparison with ship-based observations including radar, Doppler-lidar (ESRL)
 - Investigation of invigoration in mixed-phase convective clouds to identify key microphysical processes responsible for aerosol-induced changes in precipitation and its distribution under different meteorological forcings (ESRL)

Plans for Year 2

- AM3-CLUBB GCM Development and analysis
 - Allow deep convection to interact fully with CLUBB.
 - Model optimization via parameter adjustments.
 - Evaluation of AM3 with field and process models using VOCALS Model Assessment (GFDL, UW)
 - Global diagnostics development
 - Improve prediction of low level clouds compared to standard AM3
 - Continued development of microphysics, especially ice, (NCAR collaboration)
 - Analysis of climate regimes where cloud simulation is deficient (GFDL, UW, JPL).

Plans for Year 2 - continued

- CAM-CLUBB GCM Development and analysis
 - continue progress in running CAM-CLUBB
 - check in code, perform extensive evaluation (single column model & global)
 - Key issues: mixed phase processes, general cloud microphysics, aerosol interactions.
- Satellite toolkit and model evaluation:
 - Add colocated water path, cloud fraction and radiation observations from Aqua to CloudSat precipitation climatology with a focus on parameter co-variability (JPL)
 - Complete study comparing pre-CLUBB models with MODIS cloud droplet concentration (UW)