Glacier-Ocean Interactions on Short Timescales: can observations of tidal and calving
impacts on near-terminus ice flow inform us about controls on terminus stability?
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Many tidewater glaciers have experienced rapid change over the last decade. Increases in velocity, enhanced thinning, and
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M OTIVATI N G QU ESTI O N S Figure 5: GPRI-Il derived LOS velocities before (left) and after (right) a large
calving event at 23:10 on August 2. The calving event caused a sudden increase
1. How do short-term perturbations at the glacier’s calving front affect the terminus stability in near-terminus velocities that was sustained for several days.
- How does Ve|0city vary th rough a Calving event? Figure 6: (L) TerraSAR-X (TSX) derived velocity maps for the time spanning the
, . . . Vhoriz (m/d) Vhoriz (m/d) observation period; (R) TSX and GPRI derived velocities for profile 1 shown in Figure 2.
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Field Study — short-term perturbations at the calving fronts of fast moving tidewater
* In August 2012, 14-day study conducted at Jakobshavn Isbrae to monitor short-term dynamics at the calving front , \ " glaciers; though additional refinement and validation of the image
 Ground Portable Radar Interferometer (see below), tide pressure gauges (30-sec sampling), and 3 digital cameras T processing techniques is required (e.g. improved unwrapping methods,
(15-min & 10-sec sampling windows) were used to document the conditions at the terminus. O T georeference verification), the GPRI provides valuable observations of
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