How well can we detect tropical cyclone tracks in the Reanalyses data

Cheng-Ta Chen¹, Teng-Ping Tseng¹, Michael Wehner², and Prabhat²

¹National Taiwan Normal University, Department of Earth Sciences ²Lawrence Berkeley National Laboratory, Computational Research Division

Impact of Fiorino TCR wind

1200 UTC 15 September 1990 in the eastern North Pacific

Questions

- How reliable are tropical cyclone detection and tracking codes we used?
- There are tropical cyclone best tracks archives for verification. But do we have a reliable high resolution meteorological analysis to test the code?
- Is there a way to decide the optimal criteria and thresholds use in the code? How the variation in these criteria and thresholds affect reliability?
- Can the same scheme (criteria and thresholds) applied to different model simulations?
- How the criteria and thresholds depend on data resolution? Is there a spatial scaling factor?

IMILAST

Intercomparison of Mid Latitude Storm Diagnostics

TABLE 1. Different methods and some key characteristics: "variable used" (MSLP: mean sea level pressure; VORT: vorticity or Laplacian of MSLP; VORT Z850: vorticity at 850 hPa as computed by ERA-Interim; Z850: geopotential height at 850 hPa; grad.: gradient of MSLP; min: minimum), and "terrain filtering" (>1000 m; all cyclones positioned over terrain higher than 1,000 m MSL are eliminated).

Code*	Main references for method description	Variable used	Terrain filtering
M02	Murray and Simmonds (1991), Pinto et al. (2005)	MSLP (min), VORT	>1500 m
M03	Benestad and Chen (2006)	MSLP (min, grad.)	none
M06	Hewson et al. (1997), Hewson and Titley (2010)	MSLP (min), VORT, wind, fronts	Terrain-following
M08	Trigo (2006)	MSLP (min, grad.)	none
M09	Serreze (1995), Wang et al. (2006)	MSLP (min, grad.), VORT	none
MI0	Murray and Simmonds (1991), Simmonds et al. (2008)	MSLP (min), VORT	>1000 m
MI2	Zolina and Gulev (2002), Rudeva and Gulev (2007)	MSLP (min)	none
MI3	Hanley and Caballero (2012)	MSLP (min)	>1500 m
MI4	Kew et al. (2010)	Z850 (min, contour)	none
MI5	Blender et al. (1997), Raible et al. (2008)	MSLP (min)	>1000 m
MI6	Lionello et al. (2002)	MSLP (min)	none
MI8	Sinclair (1994, 1997)	Z850 VORT	>1000 m
M20	Wernli and Schwierz (2006)	MSLP (min)	>1500 m
M2I	Inatsu (2009)	Z850 VORT	none
M22	Bardin and Polonsky (2005), Akperov et al. (2007)	MSLP (min, contour)	none

*Code numbers were assigned at the beginning of the project to research groups interested in participation. A few groups have not (yet) contributed a dataset, and others have since ceased activities in cyclone tracking. Furthermore, some groups use almost identical algorithms, in which case duplicates have been removed. The original code assignment was retained to guarantee compatibility of publications for the whole project duration. Therefore, code numbers are not continuous.

IMILAST Intercomparison of Mid Latitude Storm Diagnostics

TABLE 2. Number of cyclones in the NH ($30^{\circ}-90^{\circ}N$) for summer (JJA, first column) and winter (DJF, first row) detected by each method, and track agreement between methods for summer (lower-left triangular matrix) and winter (top-right triangular matrix). Values denote a nominal percentage agreement (relative to the lower number of tracks produced by the two methods) when both methods detect a track at a similar place and time (see supplement B "Method of track-to-track comparison" for more details). Values $\geq 50\%$ are shaded (blue for winter, red for summer) with dark shading for $\geq 70\%$. In deriving this table, mountain areas (>1,500 m MSL) have been excluded.

Method	JJA	M02	M03	M06	M08	M09	MI0	M12	M13	M 14	M15	M16	M18	M20	M21	M22
DJF	×100	147	57	205	95	168	Ш	124	72	70	120	Ш	214	158	105	102
M02	123	100	68	53	65	52	60	53	67	66	61	57	50	45	39	59
M03	51	52	100	72	68	74	67	66	54	50	69	65	68	67	41	63
M06	207	51	63	100	68	49	65	59	71	66	60	60	44	45	61	61
M08	125	40	61	56	100	80	63	67	67	64	70	69	62	70	35	65
M09	285	55	73	48	77	100	66	66	75	74	71	77	45	60	38	80
MI0	99	38	52	62	57	71	100	55	64	60	58	55	63	55	34	55
MI2	282	51	62	44	65	50	60	100	71	65	56	64	50	58	31	62
MI3	82	46	46	61	59	74	47	68	100	53	68	68	65	67	39	69
MI4	82	48	43	60	5 9	76	45	71	45	100	66	70	65	68	39	65
MI5	132	47	62	50	53	69	50	59	55	55	100	57	55	57	36	61
MI6	155	44	60	49	61	74	56	66	61	66	51	100	56	69	33	69
MI8	183	39	54	42	43	40	57	41	50	52	40	40	100	42	48	57
M20	236	50	65	42	67	60	62	53	66	71	58	67	38	100	35	72
M2I	87	42	52	61	57	68	58	58	44	44	56	55	55	59	100	32
M22	147	39	44	48	37	52	33	47	42	47	39	38	32	46	35	100

IMILAST Intercomparison of Mid Latitude Storm Diagnostics

IMILAST

Intercomparison of Mid Latitude Storm Diagnostics

IMILAST

Intercomparison of Mid Latitude Storm Diagnostics

Ulbrich et al., 2013

Tropical cyclone in JRA25

Using the wind profile retrievals surrounding tropical cyclones (TCR) data results in a more realistic representation of the tropical cyclones compared to other reanalyses

Impact of Fiorino TCR wind

1200 UTC 15 September 1990 in the eastern North Pacific

Hatsushika et al. 2006

JRA-25 Overview

- Joint research project between JMA and CRIEPI
- Period: from Jan. 1979 to Dec. 2010 (use 1994 data)
- Global model resolution : T106L40 (data at 1.25° grid)
- Data assimilation : 3D-Var
- Assimilation system : JMA's operational system of April 2004.

In addition, SSM/I PW, and TOVS radiance level 1c (SSU) and 1d (HIRS, MSU) were assimilated.

 JRA-25 was the first reanalysis to use the observational data outlined below

Wind profile retrievals surrounding tropical cyclones (TCR), SSM/I snow coverage, digitized Chinese snow depth data, reprocessed GMS-AMV

 JRA-25 original boundary/forcing data Daily COBE SST and sea ice (Ishii 2005, IJC), daily 3D-ozone profile

IBTrACS

- Data version v3r4 (most recent)
- Focus on North Atlantic, East and West Pacific
- Genesis of tracks start from the location when max wind larger than 35 knots (Tropical Storm and Cat 1-5 Hurricane)

South Pacific

South Atlantic

-90

-90

0

0

135

-70

-70

10

- Use 1994 data for initial test
- Conversion of 10 min average wind to 1 min (/0.88) over W Pacific

IBTrACS still have problems

_	start 20) 1994	9	21 18	0.99	0.9	9			start (35 1994	9	21 18	0.99	0.9	9		
	164.80	14.80	20.47	998.00	1994	9	21	18		164.80) 14.80	20.47	998.00	1994	9	21	18	
	164.20	15.70	20.47	998.00	1994	9	22	0		164.20) 15.70	20.47	998.00	1994	9	22	0	
	164.10	16.70	20.47	998.00	1994	9	22	6		164.10) 16.70	20.47	998.00	1994	9	22	6	
	164.00	17.80	23.40	996.00	1994	9	22	12		164.00) 17.80	23.40	996.00	1994	9	22	12	
	163.70	19.00	23.40	994.00	1994	9	22	18		163.70) 19.00	23.40	994.00	1994	9	22	18	
	163.10	20.70	29.25	985.00	1994	9	23	0		163.10	20.70	29.25	985.00	1994	9	23	0	
	162.70	22.20	38.02	970.00	1994	9	23	6		162.70) 22.20	38.02	970.00	1994	9	23	6	
	162.30	23.30	40.95	965.00	1994	9	23	12		162.30	23.30	40.95	965.00	1994	9	23	12	
	161.80	24.30	40.95	965.00	1994	9	23	18		161.80	24.30	40.95	965.00	1994	9	23	18	
	161.10	25.10	40.95	965.00	1994	9	24	0		161.10	25.10	40.95	965.00	1994	9	24	0	
	160.40	25.70	40.95	965.00	1994	9	24	6		160.40) 25.70	40.95	965.00	1994	9	24	6	
	159.50	26.40	40.95	965.00	1994	9	24	12		159.50	26.40	40.95	965.00	1994	9	24	12	
	158.00	27.30	40.95	965.00	1994	9	24	18		158.00	27.30	40.95	965.00	1994	9	24	18	
	155.40	28.20	35.10	975.00	1994	9	25	0		155.40) 28.20	35.10	975.00	1994	9	25	0	
	153.00	28.20	32.17	980.00	1994	9	25	6		153.00) 28.20	32.17	980.00	1994	9	25	6	
	151.50	28.00	29.25	985.00	1994	9	25	12		151.50	28.00	29.25	985.00	1994	9	25	12	
	150.60	27.50	26.32	990.00	1994	9	25	18		150.60) 27.50	26.32	990.00	1994	9	25	18	
	150.70	27.80	23.40	992.00	1994	9	26	0		150.70	27.80	23.40	992.00	1994	9	26	0	
	151.20	29.20	20.47	994.00	1994	9	26	6		151.20	29.20	20.47	994.00	1994	9	26	6	
	150.60	31.30	20.47	994.00	1994	9	26	12		150.60	31.30	20.47	994.00	1994	9	26	12	
						10			02.00	147./0	52.60	20.47	776.00	1774	7	20	١ð	
		1	190	and the second	22	199	94/(<i>J9/26</i>	03:00	149.20) 33.60	20.47	996.00	1994	9	27	0	
			CP 1	All and a				18	80°	149.50) 34.30	23.40	996.00	1994	9	27	6	
100°E 60°N - 120	°E 140°E 160°	180 E	6 19			20°E	140°E	160°E	9 60°N	150.70) 35.60	23.40	996.00	1994	9	27	12	
1	140 E	And I have	A Ante				End	The L.	-	151.50) 36.40	20.47	996.00	1994	9	27	18	
1 t	1. MAY	H.S.		* \		1.+	A.	1. T		153.10) 37.60	20.47	996.00	1994	9	28	0	
	····		7 8, 7		Here i	21	1	290000	40 N	155.00) 38.30	20.47	998.00	1994	9	28	6	
5	Sielt	T V	150 E	100		2	Staves	23		157.10) 39.00	20.47	998.00	1994	9	28	12	
- Josephine -	1500000		g-k	2. 1.		1		25-25-	20°N	158.00) 39.00	0.00	1000.00	1994	9	28	18	
pip.	1		20°N	1.3	F			23		158.50) 39.50	0.00	1004.00	1994	9	29	0	
N B		TI		AX			7/0		2,2	162.00) 40.00	0.00	1004.00	1994	9	29	6	
99478	3/Ruth			.0.	1774	۲Z,	/(۲	at)		165.00	40.50	0.00	1004.00	1994	9	29	12	
the states		1	180°	100°E	- El	, Ex			180°	168.00	40.50	0.00	1002.00	1994	9	29	18	
120°E	140°E	160°E			120°E		140°E	160)°E	171.00) 41.00	0.00	1000.00	1994	9	30	0	
										178.50) 41.00	0.00	992.00	1994	9	30	6	

40°N

20°N

Tropical Storm Detection Scheme (Vitart et al., 1997, 2003)

- Local relative vorticity maximum at 850hPa > 6.0x10⁻⁵ s⁻¹.
 crit_vort = 6.0E-5
- The closet local minimum sea level pressure is detected and defines the center of the storm.

Must exist within a ~1.4° radius of the vorticity maximum.

It's also for warm core 1st and 2nd center.

crit_dist = $2.0 = -1.4 \times 1.4$ (avoid minus distance for center to center)

- The minimum sea level pressure must increase by 4hPa in all directions from storm center within 4° radius. crit_psl = 200.0 dist_psl = 3.0
- The closest local maximum in temperature averaged between 200hPa and 500hPa is defined as the 1st center of the warm core. The temperature must decrease by at least 0.2 K in all directions from the warm core 1st center within 3°radius. crit_twc = 0.2 dist_twc = 3.0
- The closest local maximum in thickness averaged between 200hPa and 1000hPa is defined as the 2nd center of the warm core. The thickness must decrease by at least 500 m in all directions from the warm core 2nd center within 3°radius. crit_thick = 100.0 dist_twc = 3.0

Tropical Storm Tracking Scheme (Vitart et al., 1997, 2003)

- For a given storm, we examine whether there are storms that appear on the following time step (6hr) at a distance of less than 400 km.
 If there is no such storm, then the trajectory is stopped.
 rcrit = 400.0
- It must satisfy a maximum 10m wind velocity > 10 m/s and warm core at the same time for 4 times during total life time. (not necessarily consecutive) wcrit = 10.0 nwcrit = 4.0
- The genesis point must satisfy maximum 10m wind velocity > 10 m/s

	N8 72% N7 81% N6 81% N5 88% N4	Stri	ct <u>w11N5</u> 78%	Hit	Ra <u>w13N5</u> 66%	te					
	Nwcrit	_				→ St	rict				
	Wcrit	W10	W11	W12	W13	W14	W15				
R400W10N4-vo	6D20T02TB3P200PB3	91%	91%	81%	72%	66%	59%				
	R500 91% R400 91% R300 91% R200 91%	Strict			N8 0% N7 0% 0% 0% 0% 1% 17% Nwcrit Wcrit	W10	W11N5 4% W11	W12	W13N5 5% W13	W14	W15
C	at N	-5		R400W10N4-vos	D20T02TB3P200PB3	17%	15%	16%	18%	19%	21%
V	VP (3	32)			Rcrit R500 17% R400 17% R300 15% R200 12%		Fa	ilse Ra	Ala ate	Irm	

	N8										
	100%										
	N7						• •	_			
	100%					н	it R	ate			
	NG										
	100%										
	N5		W11N5		W13	BN5					
	100%		100%		95	; %					
	N4										
	100%										
	Nwcrit										
	Wcrit	W10	W11	W12	2 W	13 \	W14	W15			
R400W10N4-voe	5D20T02TB3P200PB3	100%	100%	100	% 10	0% 9	95%	95%			
	Rcrit						·				
	R500				N8						
	100%				13%						
	R400				N7						
	100%				23%						
	R300				N6						
	100%				26%					l	
	R200				N5		W11N5		W13N5		
	100%				31%		23%		14%		
					129						
					438 Numerit						
					NWCTIT						
					Wcrit	W10	W11	W12	W13	W14	W15

Cat 1-5 WP (20)

	N4			-		-				
	43%									
	Nwcrit									
	Wcrit	W10	W11	W12	W13	W14	W15			
R400W10N4-vo	6D20T02TB3P200PB3	43%	41%	35%	29%	27%	21%			
	Rcrit									
	R500									
	43%									
	R400			alse		arm				
	43%		•				•			
	R300									
	41%			R	ato					
	R200				alc					

R400 vs R200 Track Impact

33%35%43%False AlarmRate

D15

D20

D25

43%

	TOS
	0%
TB2	T06
0%	6%
твз	T04
43%	17%
TB4	T02
46%	43%
Dist_Twc	Crit_Twc
Crit_Dist.	Crit_Vort.
V06D20T02	TB3P200PB3
Dist_Psl	Crit_Psl
PB4	P200
43%	43%
PB3	P400
43%	43%
PB2	

V10T04
9%

V02	V06	V10	V15	V20	V25
43%	43%	44%	33%	10%	14%

V15D10T04 22%

D10

V15D10T04

90%

D10

100%

Cat 1-5 WP (20)

D15

100%

D20

100%

D25

100%

TB2	T06
75%	85%
TB3	T04
100%	100%
TB4	T02
100%	100%
Dist_Twc	Crit_Twc
Crit_Dist.	Crit_Vort.
V06D20T021	B3P200PB3
VOGD20TO21 Dist_Psl	Crit_Psl
VOGD20TO21 Dist_Psl PB4	Crit_Psl
VOGD20TO21 Dist_Psl PB4 100%	rB3P200PB3 Crit_Psl P200 100%
VOGD20T021 Dist_Psl PB4 100% PB3	TB3P200PB3 Crit_Psl P200 100% P400
V06D20T021 Dist_Psl PB4 100% PB3 100%	TB3P200PB3 Crit_Psl P200 100% P400 100%
V06D20T021 Dist_Psl PB4 100% PB3 100% PB2	TB3P200PB3 Crit_Psl P200 100% P400 100%

T08

V02	V06	V10	V15	V20	V25
100%	100%	100%	100%	95%	60%

V10T04

100%

Hit Rate

V06 V25 IBT shortest Track

D20 D10 IBT Track Impact

Summary and Discussion

- We need very high resolution reanalysis data without false alarm to:
 - test the reliability of TC detection and tracking scheme
 - compare the different schemes
 - rescale the data and study the spatial scale dependence of criteria and thresholds used in the scheme
- Probably still need to tune the criteria and thresholds when the scheme is applied to different models (even at the same resolution). How to determine optimal criteria and thresholds?
- Not only TC number affected by the criteria and thresholds.
- Should we only target stronger TC (> CatI) that has less ambiguity?

•••••