Is there a useful indicator for thresholds in the AMOC?

Sybren Drijfhout

University of Southampton (NOCS) & Royal Netherlands Meteorological Institute

Record $\delta^{18}O$ from the GRIP ice core. The glacial climate characterized by so called Dansgaard-Oeschger events (numbered) and Heinrich events (dotted).
Phase space reconstruction using Takens' embedding theorem

Higher resolution ice-core data

Cimatoribus et al. 2012a
A box model of the Atlantic MOC

\[m = k(\rho_2 - \rho_1) = k[\beta(S_2 - S_1) - \alpha(T_2 - T_1)] \]

\[\dot{S}_1 = m(S_2 - S_1) + S_0 F_1 \]

\[\dot{S}_3 = m(S_1 - S_3) - S_0 F_1 + S_0 F_2 \]

\[\dot{S}_2 = m(S_3 - S_2) - S_0 F_2 \]
Steady state solution of equations

Monostable

Bistable

\[m = -\frac{1}{2}k\alpha(T_2 - T_1) \pm \sqrt{\frac{1}{4}(k\alpha(T_2 - T_1))^2 - k\beta S_0 F_1} \]

Rahmstorf (1996)

\[M_{ov} = -F_1 \] is: Advective Stommel feedback

Huisman et al 2009
Slowly changing M_{ov} by changing M_{az}

$EPR = Mov + Maz$

Cimatoribus et al. 2012b
(Saddle node) bifurcation

Noise induced regime shift

Heteroclinic orbit
• F_{ov} is often a good but not a perfect indicator

• A sufficiently negative F_{ov} indicates the ME regime, only if $E-P$ is not too large

• Decreasing F_{ov}, or increasing F_{az} may lead to a collapse if $E-P$ is not too large

• The response to hosing depends on F_{ov}, but the advective salt feedback by the overturning circulation is not the only feedback.

$$L = \frac{\partial F_{ov}}{\partial \Psi} > 0 \quad \text{if} \quad F_{ov} < 0$$

$$\frac{d(A_{FW})}{dt} = F_{sf} + F_{ov} + F_{az} + F_{mix} - F_N$$

Figure 5: a. Collective plot of bifurcation diagrams where the maximum AMOC streamfunction is shown as a function of the two control parameters δ_p (strength of the DIPO anomaly) and γ_p (strength of EVAP anomaly). Some solution branches are incomplete due to computational problems. The projection of the position of the saddle-node bifurcations on the (δ_p, γ_p) plane is also shown.
IPCC (2007): It is very unlikely that the AMOC will undergo a large abrupt transition during the course of the 21st century.
Obs: Weijer et al. (1999)

New Obs: Bryden et al. 2011:
Fov = -0.13;
Faz = 0.12;
EPR = 0.05

Diff_EPR between 24s and 34S < 0.10

Weber et al. (2007)

Drijfhout et al. (2011)
Fig. 13a, b HadCM3 Atlantic overturning (zonal-mean) and gyre components of northward freshwater transport (units Sv) shown with the model Atlantic total ocean (including diffusive component) and implied freshwater transports (as in Fig. 12). All transports are relative to Bering Strait a years 1–10, b years 361–400.
Scenarios for the next century
MOC in CCMs too stable because of wrong sign of salt advection feedback

Sign of F_{ov} (salt advection feedback) determines whether large changes may occur.
Temperature anomaly in GIN-sea in FIO in CMIP5 scenario runs
THE AMO

Coupled models and AMOC collapse

EC-EARTH Pre-industrial control

FIO-RCP2.6

Monthly values for the AMO index, 1866-2009
Impact: Surface air temperature

EC-EARTH

FIO
Atlantic overturning response

- All models show a starting of recovery
- But very large differences in term of inertia of the AMOC
- Potentially related to the sign of the classical AMOC advective salt feedback
- As confirmed by the density budget analysis of the Atlantic

Density variation in the Atlantic (North-South)

- EC-Earth
- HadGEM-ES
- IPSL-CM5A-LR
- MPI-ESM-LR

Advection salt transport by the AMOC at 34°S

If negative => AMOC is in a bistable mode in box models
M_{ov} determines shape of double well
Coupled feedbacks temporarily alter the height of the ridge and the size of the noise
Figure 1. (left) A typical bifurcation diagram with two bifurcation points, marked with blue circles. The two fat branches of the curve are the stable states as a function of a control parameter. The dashed branch in between is the separating unstable fixed point. The vertical red lines indicate where the potentials plotted on the right are taken. (Imagine these as plots in and out of the paper along the red lines a and b). The red dots indicate the state of the system (top right) before and (bottom right) after the jump by a bifurcation.

\[M_{ov} = 0 \iff \mu_0 = -\frac{2\sqrt{3}}{9} \]

\[\dot{x} = -\partial_x U_\mu(x) + \sigma \eta, \quad (1) \]

[10] In order to investigate the significance in detection of a tipping point from a data series, two simulations of the Langevin equation (1) with a double well potential \(U_\mu(x) = x^4/4 - x^2/2 - \mu x \) are performed. In the first the control parameter \(\mu(t) \) is changing linearly with time, such that the bifurcation point \(\mu_0 = -2\sqrt{3}/9 \) is reached at time \(t = 900 \)
Conclusions

• Uncertainty in AMOC projections is associated with multiple equilibria that can be modelled by a double well potential (Langevin Eq.)

• M_{ov} determines the shape of the double well. When M_{ov} decreases the off-state-well deepens and the on-state-well shallows, until it disappears; when M_{ov} increases the opposite occurs.

• Net E-P over the Atlantic plays a similar role. When M_{ov} and E-P show opposing trends, strong nonlinear behaviour is to be expected.

• The amplitude of M_{ov} and of net E-P (double well structure) and the strength of the noise determine the likelihood of abrupt change

• A collapse is associated with a strong, correlated decrease in M_{ov} and overturning strength

• The factors that determine the shape of the double-well are strongly biased in coupled models