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GOALS

* Document changes In hurricane statistics, with as little iInhomogeneity
as possible and quantified uncertainty. As far back as possible.

* Represent the (two-way?) interactions between hurricanes and
climate in dynamical models

» Predict/project changes and variations in hurricane statistics
* Extend our window of predictability

» Expand the surite of predictable characteristics beyond basin-wide
quantities

» Attribute changes in hurricane statistics to particular factors, in a
scientifically rigorous manner



OUTLINE

* Climate modeling of hurricanes
* Hurricanes and ocean climate
 Seasonal hurricane forecasts

« Observational issues

* Hurricane theory

* Summary of key Issues



Tropical storms (annual)

Hurricanes (A ug.-Oct.)

DYNAMICAL MODELS EXHIBIT SKILL IN
SEASONAL BASIN-WIDE HURRICANE FREQUENCY

Statistical-dynamical hybrid model

Emanuel et al (2008, BAMS)
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CENTURY-SCALE SS
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MODEL RESPONSE EXHIBITS SENSITIVITY TO FORCING USED

Tropical Storm Frequency Response to Same
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How do we evaluate model skill in this context!



Annual Storm Count

MODEL RESPONSE EXHIBITS SENSITIVITY TO FORCING USED

Tropical-mean temperature change In

Response of Model Depends upper troposphere and tropopause layer
on Reanalysis Used s the key difference
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How do we evaluate model skill in this context!
Opens door for direct radiative forcing to affect TCs



DIVERGENCE OF 2 | ST CENTURY PROJECTIONS OF TS FREQUENCY

* Even sign of NA TS frequency response to GHG unclear:
Not big help in decadal predictability

* Various studies downscale different coupled models, and over
different periods

Anthropogenic-Influence: Projected Changes in NA TS Frequency
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22.500% . I I Knutson et al (2008), Zhao et al
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s there any consistency In the various
projections?



DYNAMICAL MODELS EXHIBIT CONSISTENT RELATIONSHIPTO MDR AND
TROPICAL SSTS - ALL CONSISTENT WITH OBSERVATIONS

80

B Knutson et al. (2008), Knutson el & {2010)
Trends (2001-2100) made B0-year equivalent
1. GFDL CM2 1
60 _ 2. GFDL CM2.0
3. UkMat HadCM3
4. UKMet HadGEM1
5. Max Planck-ECHAMS
8. MRI CGCM2 3.2

W 2acctal (2009)

Trends (2001-2100) made B0-year equivalent
1. GFDL CM21

2. UrkMat HadCM3

3. Max Planck-ECHAMS

W Enanuel et & (2008)
(2181-2200) minus (1881-2000)
1. NCAR CCSM3.0

2. CNRM-CM3

3. CSIRO-MK3.0

4. Max Planck-ECHAMS

5. GFOL CM2.0

8. MIROC-Medres

7. MRI CGCM2.3.2

40 I Bangtsson et al. (2007)

(2061-2080) mnus (1961-1890) from CNRM
1. with T213 AGCM
—_—y= 11.7+40.58x% 2. with T958 AGCM

607 R=0.72;R* =051 W oouei et a1 (200)
RMSE = 27.2% (2081-2080) minus (1966-1668)

MAE = 22 6% 1. MRI CGCMZ 3

-80 — —_— I Gualdi ot al. (2008)
-80 .80 -40 -20 0 20 40 60 80 1. INGV-ECHAMA 2.CO,

Dynamical model (%)

Statistical model (%; Atlantic and tropical SSTs)

Villarini et al (2010, J. Clim. submitted)
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dynamical downscaling results (horizontal)



STATISTICAL MODELS/DOWNSCALING TOOLS

* Many predictors are being used:
» are they equivalent! in which contexts?
* which are most predictable?
* How best to assess the applicability of a statistical model?
» what Is the relevant out of sample test?
- we have limrted observational records

* many predictors covary over historical period



Atlantic Tropical Cyclone Power Dissipation Index Anomalies: Observed and Based on Sea Surface Temperature
Anomalies relative to 1981-2000 average: 2.13x10" m’s
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Atlantic Tropical Cyclone Power Dissipation Index Anomalies: Observed and Based on Sea Surface Temperature
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PROCESSES CONTROLLING INTERANNUAL TROPICAL ATLANTIC
VARIABILITY ARE SEASONALLY DEPENDENT
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Biases In tropical Atlantic mean state and seasonal variability
can influence character of interannual changes.
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OBSERVATIONAL EVIDENCE FOR OCEANIC CONTROLS ON HURRICANE INTENSITY
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FORECASTS

Seasonal Hurricane Forecasts Initialized in Boreal mid-Spring to
early-Summer Are: Feasible, Potentially Skillful and Made

» Statistical prediction schemes
(e.g., Gray, Klotzbach and Gray,
Elsner et al)

* Dynamical prediction schemes
(e.g,Vitart ,Vitart et al, LaRow
et al)

* Hybrid schemes (e.g,, Wang et
al, Zhao et al,Vecchi et al)

A
Climate Prediction "

HOME > Expert Assessments > Atlantic Hurricane Outiook Update

NOAA PRESS RELEASE

NOAA: 2009 Atlantic Hurricane Season Outlook Update
Issued: 6 August 2009

CPC Information Realtime monitoring of tropical Atlantic conditions
CPC Web Team Realtime monitoring of tropical East Pacific conditions

Atlantic Hurricane Outlook & Seasonal
Climate Summary Archive

The 2009 Atlantic hurricane season outlook is an official product of the National Oceanic and
Atmospheric Administration (NOAA) Climate Prediction Center (CPC), and is produced in
collaboration with scientists from the National Hurricane Center (NHC) and Hurricane Research
Division (HRD). The Atlantic hurricane region includes the North Atlantic Ocean, Caribbean
Sea, and Gulf of Mexico.

Interpretation of NOAA’s Atlantic seasonal hurricane outlook

This outlook provides a general guide to the expected overall strength of the upcoming
hurricane season. This outlook is not a seasonal hurricane landfall forecast, and does not
imply levels of activity for any particular region.

Preparedness

® Hurricane disasters can occur whether the season is active or relatively
quiet. Residents, businesses, and government agencies of coastal and near-coastal
regions are urged to prepare for every hurricane season regardless of the seasonal
outlook. NOAA, FEMA, NHC, Small Business Administration, and the American Red
Cross all provide important hurricane preparedness information on their web sites. It
only takes one hurricane (or even a tropical storm) to cause a disaster. Be prepared!

NOAA does NOT make seasonal hurricane landfall predictions

® NOAA does not make seasonal hurricane landfall predictions. Hurricane landfalls are
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TWO-TIERED DYNAMICAL FORECAST SCHEMES
WITH AGCMS EXHIBIT SKILL
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STATISTICAL-DYNAMICAL HURRICANE FREQUENCY
RETROSPECTIVE FORECASTS INITIALIZED JANUARY EXHIBIT SKILL

Monthly forecasts 30-member lagged ensemble forecasts
o e T e T R T N Y A | S T T Y S NSl GO e Lo O o o
(a) January Forecast: (b) January Forecast:
— CM2.1:r=0.66, rmse=2.28 — —  CM2.1:r=0.57,rmse=2.47 —

Annual Atlantic Hurricane Count
Annual Atlantic Hurricane Count
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Vecchi et al. (2010, MWR submitted)



CURRENT SST ANOMALY FIELD IS CONSISTENT WITH
2010 BECOMING AN EXTREMELY ACTIVE YEAR (BASIN-WIDE)

Olv2 Sea SurfaceJ L'II':emg(e]qaature Anomaly (*C)
T E NOAA's May 2010 outlook:
i e " SRS, 85% above average
| 0% average

5% below average
NOAA Outlook not for landfall
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Atlantic SSTA substantially warmer than the tropical mean
This type of conditions foreseen by initialized GCMs since late-2009.
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¥ Forecast system 1982-2009



MULTI-STEP DOWNSCALING TO GET EXTREME HURRICANES!?

% .
2) Regional model bro}e;ts
change in hurricane colints

from climate model Sutput.

Adapted from
Bender et al (2010, Science)

Global Climate Models -> Regional Model -> Hurricane model

Large-scale 15 [Freguenicy Intensity



PROJECTED FREQUENCY DECREASES, EXTREMES INCREASE

Projected Changes in Atlantic Hurricane Frequency over 21st Century

bars indicate best estimate, dots indicate alternative estimates.
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CANWE EXTEND SEASONAL PREDICTIONSTO LANDFALL!?

Observed landfall, track and genesis linked

Tracks Genesis Landfall
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Can this type of information be exploited in the climate and forecasting context!



CANWE EXTEND SEASONAL PREDICTIONSTO LANDFALL?

Fraction of peak river discharge Three landfalli
assoclated with tropical cyclones ,

Range (km)
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Tropical Cyclone
- -,
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Villarini and Smith (2010, Water Resource Res.)
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e —— R
Villarini et al (2010, in prep.)

Can this type of information be exploited in the climate and forecasting context!



OBSERVATIONS

* Hurricane databases not built as climate data records.

9 Effo I”'tS Mu S't @0 ﬂt| B 'tO “Missing storm”adjustments to HURDAT Tropical and Subtropical Storm Counts (1878-2006)
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Temperature

Unadjusted Counts

Adjusted Counts

Landfall Counts

SST

Normalized Tropical Atlantic Indices

Global Mean Temperature

MDR SST: HadISST

Tropical Storms: Unadjusted

Trop. Storms: > 2-day: Unadjusted

Hurricanes: Unadjusted

Trop. Storms: Adjusted

Trop. Storms: > 2-day: Adjusted

Hurricanes: Adjusted

U.S. Landfall. Trop. Storms: Unadjusted

U.S. Landfall. Hurricanes: Unadjusted

Relative SST Indices
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Sources:
Vecchi and Knutson (2008, J. Clim.)
Landsea et al. (2010, J. Clim.)
Vecchi and Knutson (2010, J. Clim. submitted)



DATA ARCHEOLOGY AND PALEO-PROXY INDICATORS
COMPLEMENT INSTRUMENTAL RECORDS

Document-based reconstruction
of Antilles TS and HU
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Proxy reconstructions of basin-wide TS frequency
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Mann et al. (2009, Nature)

Statistical extrapolation, so depends on:

-Validity of statistical model (e.g., predictors
chosen)

-Quality of training data
-Quality of proxy data



THEORY/UNDERSTANDING:
WHAT CONTROLS HURRICANES?

* Potential Intensity theory exists (e.g., Emanuel, Holland....)

* What are limitations? VWhat is relevance to actual intensity
change!

 Can we develop a climate-relevant theory for genesis!

» |dealized and coordinated forcing experiments with
AGIEME

* Development of Genesis Indices



EERERTENDEMANUEL (1998) POTEN TIAL INARERSSRE

o b =00
pr-ve, 2 Lol i)

o

rmax

» Defined locally from a sounding and SST.

» All other things equal: 55T increase-> Pl increase

Both through direct impact on T, and k*, as well as indirectly impacting T and k,

« However, remote SST changes impact upper tropospheric temperature (e.g,
Sobel et al 2002) changing T, directly and indirectly, and enthalpy diff. indirectly:

remote warming acts to reduce Pl.

See also Shen et al (2000), Tang and Neelin (2004) and Ramsay and Sobel (2010, submitted)

N GEN s, Pl-=Pl'> ~ 8 (551F-=5Soill
RE s | Pl >| smaller than |Pl, so PI' ~ 8 (551 -=SSilE



POTENTIAL INTENSITY TRACKS SST RELATIVE TO TROPICAL-MEAN,
NIGIE LO@ AL S5

*global-mean Pl changes still need to be explained.

Based on 21 global climate models
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Tropical-mean Pl Change (ms™)

4.0

2.0

0.0

-4.0
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Change in <PI> (m/s)

TROPICAL-MEAN PI:
SURFACE ENTHALPY DISEQUILIBRIUM SETS SCALE
| APSE RATE CHANGE SETS SIGN

EINCEP 1982-2007
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Relationship explains:
- IPCC-AR4 model decadal noise and
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- NCEP Reanalysis trend.



IDEALIZED FORCING EXPERIMENTS

If local SST the dominant control, as opposed to relative SST:
* Similar Atlantic Response to Atlantic and Uniform Fcing

* Little Pacific Response to Atlantic compared to Uniform

| Atlantlic Eorcing Global Forcing
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NORTH ATLANTIC RESPONSETO IDEALIZED SST

Change in Annual NA Storms from lIdealized SST:
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PRINCIPAL ISSUES (MY BIASED VIEW)

* Lack of climate-relevant theory of genesis/basin-wide frequency

« Uncertainty in past (and future) large-scale changes (e.g,, SST, upper tropospheric/
tropopause layer temperature)

* Sensitivity studies with AGCMs not coordinated (meta-studies can only do so
much)

* Historical cyclone database corrections adjustments need assessment, continued
effort and extension needed (more, different paleo-proxies)

 Climate predictions/projections beyond frequency (landfall, extremes)

» Statistical models/downscaling techniques need to be compared and evaluated for
skill/relevance to various applications (e.g., prediction, projection, proxy)

« Coupled model biases in tropical Atlantic and subsurface observations in GOM
\
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* Sensitivity studies with AGCMs not coordinated (meta-studies can only do so
much)
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* Historical cyclone database corrections adjustments need assessment, continued

effort and extension needed (more, different paleo-proxies)
Coordinated assessment of corrections, encourage proxy and reanalysis projects

 Climate predictions/projections beyond frequency (landfall, extremes)
Extend predictability window. Explore extreme impacts in climate context, controls on landfall

» Statistical models/downscaling techniques need to be compared and evaluated for

skill/relevance to various applications (e.g., prediction, projection, proxy)
Comparisons of sensitivity of statistical models to range of conditions

(e.g., compare to dynamical downscaling)

« Coupled model biases in tropical Atlantic and subsurface observations in GOM
CGCM development, resolution? parameterizations! Why few subsurface GTS obs in GOM?



