Global Modeling:
Challenges and Opportunities

Mick Follows



Glacial-interglacial variations in
atmospheric CO2 and climate
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Temporal variability of primary
producers - phytoplankton
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 What drives the changes?

* Environmental and ecological
controls?

» Biogeochemical consequences?




A significant global modeling
challenge is to bridge the significant
scales...

* Physical scales:
* Molecular diffusion/viscosity to global overturning
* Biological scales:

 Intra-cellular metabolic networks to global
biogeography



Southern Ocean Circulation and
Biogeochemistry
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Southern Ocean Overturning and
Tracer Transport
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Challenge:
Modeling the range of physical
scales significant for ocean
circulation and climate variations

» Understanding, quantifying and parameterizing
role of “fine scale” physical phenomena central
to interpretation and simulation of global-scale
circulation and its interaction with climate and
biogeochemical cycles...



Food Web, Export and Carbon Cycle
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« Rate of primary production

» Character of primary producers
 Predation of primary producers
 Respiration of organic matter
zooplankton

* Respiration by heterotrophic
microbes

* Depth of respiration...




A challenge:
Understanding and modeling the
global biogeography of primary
producers and heterotrophic
microbes

How is it governed by the constraints at the scale
of individuals?



Significance:
« Biogeochemical

« export
o DMS production
« calcification
« nitrogen fixation
« Ecological
« Stability
« Paradox of the plankton

Atlantic Meridional
Transect (AMT):

Aiken et al. (2000)
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Biogeography of diverse
heterotrophic microbes
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A guiding principle for “trait-based” models
of microbial communities
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“Everything is everywhere but the environment selects” — Baas Becking (1934)



Modeling diverse ecosystems:
Traits and trade-offs are critical

 \What controls traits and
trade-offs?

* Organism size

e Resource allocation at
Individual scale
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Example: Trade-offs for nitrate

acquisition
Litchman et al (2007)
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Example: Nitrogen fixers

» Diazotrophs (nitrogen fixers) require additional
iron for nitrogenase

* Diazotroph have slower growth rate than non-
nitrogen fixing counterparts

* energetic cost of nitrogen fixation?

 Resource availability and allocation determines
ranges of diazotroph species (e.g. Saito et al.,
2011)



Nitrogen fixers

l[ron quota

Others

Growth rate



Example: Modeled biogeography of
phototrophic diazotrophs
* Assumed trade-offs for diazotrophy
* High iron quota
 Low maximum growth rate

* Plausible biogeography emerges in competition
with non-diazotrophs

e.g. Modeled diazotroph biomass
Monteiro et al (2010)
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A challenge:
What are the traits and trade-offs
which define fithess associated with
calcification?

» Calcification of central importance in regulating
global ocean biogeochemistry on vast range of
timescales

 \What are costs and benefits of calcification to
the individual organism?

 How does environment (and its varlablllty)
regulate fitness of calcifiers?




A challenge:
What are the traits and trade-offs
which define the fithess and function
of diverse heterotrophic microbes?

» Adaptation for specific substrates (i.e.
Components of DOC and POC)?

e Size, morphology? (important for photo-
autotrophs)

» Implications for efficiency of recycling, export
and storage of carbon



The promise and challenge of
molecular information

* Molecular biology has provided tools to identify
and map traits, and association with organisms,
In environment

* e.g. micron-scale, unicellular diazotrophs

 Genomic characterization of organisms
provides extremely detailed mapping of
metabolic networks, flow of elements within

cells

e Information about resource allocation and trade-offs
at the scale of individual



Metabolic pathways in Prochlorococcus. Dufresne et al. (2003)
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Whole cell metabolic models:
e.g. Edwards et al (2001)
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recon ST.I'L[CT.i[)I]
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In silico predictions of Escherichia coli
metabolic capabilities are consistent
with experimental data

Metabolic pathway Jeremy S. Edwards'?, Rafael U. Ibarra', and Bernhard O. Palsson™
analysis and
phenotype phase plane
analysis

Cell wall

Amino acids
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~*Pyrimidines
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Figure 1. From genome sequence to metabolic characteristics. The
metabolic network can be reconstructed from the annotated
genome sequence??®. The global properties of the metabolic
reconstruction can be studied to determine the feasible steady-state
metabolic flux distributions, and this process can be performed with
a whole-cell pathway analysis**3¥. However, this process is
computationally intense; thus we can map feasible steady-state
metabolic flux distributions using an alternative approach known as
phenotype phase plane (PhPP) analysis’?13%_ PhPP analysis consists
of calculating the optimal solution using linear programming as a
function of two fluxes in the metabolic network (by setting the o and
p value in equation 1). This process constructs the surface revealed
in the figure. Finally, linear programming can be applied to calculate
the value ot the objective function for specitic values of the uptake
fluxes; additionally, the optimal value of all other fluxes is
calculated®®#*_ The results from this process can be compared to
experimental data to evaluate the suitability of this modeling
framework. Furthermore, this modeling approach can be used to
guide the metabolic engineering of industrial microorganisms.

Metabolic flux (v4)

Flux balance analysis —
linear programming

Maximum v—12-

Metabolic flux (v;)



Cross-scale modeling of marine
microbial populations and
biogeochemical cycles

* Processes at individual level may be mapped
and constrained by conservation of mass and
energy

* Defines, in part, fitness in a given environment

 Must be simplified and parameterized for
practical application in large scale ecological
and biogeochemical models.

 Analogy to modeling physical circulation of
ocean
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An intermediate approach:
Resolving macromolecular composition,
elemental and energy flow

o Explicit energy and mass
constraints

« Macromolecular elemental
composition prescribed

« Whole cell elemental
composition dynamic

« models of similar nature
published in bio-

engineering literature

Examples: Shuter (1979), Shuler et al (1979), ...



Summary

« Characterizing and quantifying “traits and trade-offs™ at the scale
of individuals is a critical step in advancing “trait-based”
representations of marine ecosystems and biogeochemical
cycles

» Detailed conservation constraints at the cellular scale can
provide the basis for key trade-offs

« Genomic and molecular approaches provide information at the
cellular scale

o ... but parameterization is necessary (essential?) for global,
climate scale studies

- There is parallel with the tension between understanding,
resolving and parameterizing fine-scale physical phenomena in
climate models



Food webs and fisheries
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Fig. 4. The food web of herring Clupea harengus. From Hardy (1924).

Sir Alister Hardy (1924) Redrawn by Brander et al (2003)



Depth (m)

Biologically driven downwards transfer of
nutrient elements (C, N, P, Fe, ...)
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Respiration and the character of
organic matter
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An interesting historical parallel

* Gordon Riley (1946) sought to understand
complex relationships between phytoplankton
abundance and environment at Georges Bank
introducing mechanistic models to complement
statistical models.

* Analogous situation with metagenomic data —
currently not well connected to mechanistic models.



Modeling seasonal variations in marine
phytoplankton: Riley (1946) JMR 6

arm Journal of Marine Researcy,
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Modeling seasonal variations in marine
phytoplankton: Riley (1946) JMR 6
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1046] Raley: Phytoplankton Populations 69

* Riley used

model to infer
2 seasonal
contributions
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Figure 20, Estimated rates of production and consumption of carbon. Curve at top is
the photosynthetic rate. By subtracting the respiratory rate the second curve is obtained,
which is the phytoplankt-oq production rate. From this is subtracted the zooplankton
frazing rate, yielding the curve at the bottom, which is the estimated rate of change of the
phytoplankton,
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New cells

(biomass)

-
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Products di Cell 111
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Figure 1. Substrate and energy low within a cell. Substrate < 700 Da are actively taken up via membrane
proteins (1). As the substrate enters the cell via active uptake, it either enters into catabolic pathways
(blue lines) or anabolic pathways (green lines). Monomers for anabolism can come preformed from the
environment or as products of catabolism. The red-hashed lines represent the flow of energy to and from
these metabolic pathways. Energy is conserved via substrate catabolism and ATP is produced at a rate a.
As ATP is hydrolyzed, energy is released and utilized at rate b to drive anabolic processes such as produc-
tion of new cells (growth; II) and production cell storage products (l11). Energy is also utilized at various
rates to support processes that are independent of anabolism. This maintenance energy is used at rates
¢, to activate uptake systems, c, to fuel cell motility, c_ to actively eliminate waste, and c, to repair cellular
machinery. In the absence of exogenous organic substrates, the cell can yield ATP at rate d by catabolizing
storage material (endogenous substrates). Adapted from del Giorgio and Cole (1998)
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Figure 3. Conceptual diagram demonstrating the relationship between environmental stressors
or environmental “hostility” and the partitioning of energy within a bacterial cell, the result-
ing bacterial growth efficiency (BGE), and cell specific respiration. As environmental hostility
increases, more energy is partitioned into maintenance energy (EM). Thus, bacterial growth
efficiency decreases and cell-specific respiration (SP) increases. Some combination of both
physical (temperature, pH, salinity) and chemical (toxins, substrate availability) factors contrib-
ute to environmental hostility

Carlson et al (2007)
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FIG. 4. Integrated constraint-based model of E. coli: the E. coli i2ZK model. Constraint-based modeling frameworks have been developed for
metabolism (5, 14, 19, 30, 52, 62), regulation (9), transcription, and translation (1). The connectivity among the three modeling components is
shown here. Integration of these three modeling components should produce an integrated model of E. coli that accounts for nL.irl;f 2,000 genes,
referred to as the E. coli i2K model. This model can be used to reconcile diverse “-omics” data and utilize the data to more accurately predict a
cellular phenotype.



Diatoms and Dinoflagellates

e Diatoms
» Photo-autotrophs
- Larger cells, spanning 5 — 500 microns &
 Silica frustules

e Fast-growing opportunists
« Dinoflagellates

« Flagella

Auto-trophic (?), mixotrophic and heterotrophic

Large cells ~10's microns + (?)

Slower growth rates

Some produce toxins (Harmful Algal Blooms)



Ocean-Atmosphere Carbon Cycle

e Simple global model

* Highly parameterized

 Atmospheric pCO2
function of export of
organic carbon from
surface and physical
“flushing” of deep
and surface waters.
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Synechococcus WH8102

67,387 bp nrtP/ Carbonic

e .

Zinc ABC Cyanate ABC
transporter transporter

genome

Physiological information:
Mapping metabolic pathways

N

Ecological information:
Mapping environmental
distributions of ecotypes and
biogeochemical function
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