DIMES Summary

Baylor Fox-Kemper (not a PI) On behalf of DIMES team With Input from Gille, Speer, Ledwell, & Ferrari

DIMES: Diapycnal and Isopycnal Mixing Experiment in the Southern Ocean

- A US + UK experiment
- Diapycnal diffusion and isopycnal dispersion and eddy fluxes
- Improve eddy parameterizations in models of the MOC for climate variability

DIMES Investigators

John Toole, Lou St. Laurent, Rick Krishfield, Ken Decoteau, Dave Wellwood, on Fine and Microstructure

Breck Owens, Kevin Speer, Nico Wienders, Peter Lazarevich, Sarah Gille, Marina Frants, Joe LaCasce, Raf Ferrari, John Taylor, John Marshall, on RAFOS Floats and isopycnal eddy transport.

James Girton, Byron Kilbourne, Andreas Thurnherr, Angel Angulo, Xinfeng Liang, Tim Duda, Luc Rainville, on fine-structure with EM-APEX, LADCP, Shearmeters

Alberto Naveira Garabato, Mike Meredith, Nathan Cunningham, Harry Bryden, Mark Inall, Brian King, David Smeed, Katy Sheen, Alex Brearley, Emily Shuckburgh, JB Sallee, Dave Stevens, Martin Wadley, Karen Heywood on Hydrography, Energy Transport to Mixing, Isopycnal Stirring.

Andy Watson, Marie-Jose Messias on Mixing and Stirring from the Tracer

Funding and Support from:

NSF

NERC

BAS

Ships:

R/V Roger Revelle

R/V Thomas *G* Thompson

RRS James Cook

RRS James Clark Ross

R/V Laurence M. Gould

Different approaches to estimating K

• Tracer release experiments (moment method)

$$K_{Tracer} = rac{1}{2} rac{\mathrm{d}\sigma_y^2}{\mathrm{d}t}, \qquad \sigma_y^2 = \int (y - y_c)^2 c \, \mathrm{d}A$$

• Float release experiments (Taylor's formula)

$$K_{Taylor} = \frac{1}{2} \frac{\mathrm{d}}{\mathrm{d}t} \left\langle (y(t) - y_0)^2 \right\rangle = \int_0^t \left\langle v(t)v(t') \right\rangle \mathrm{d}t'$$

Tracer: Ledwell, Watson, Messias

Floats: Owens, Lazarevich, LaCasce, Gille, Ferrari, Marshall, Sallee

2. DIMES Trajectories as of Sept 2011

Numerical model of the DIMES region

- MIT General Circulation Model, 3km resolution, 50 vertical levels
- Forced with reanalysis surface fluxes and 1°x1° ECCO-OCCA hydrography at lateral boundaries

θ at 500m

Validation of numerical model: US3

$$\mu = \sum_{grid} \int c_i \, \mathrm{d}z \Big/ \iiint c \, \mathrm{d}V$$

 $\int (c'_i)^2 \,\mathrm{d}z \,\Big/ \, \int \int \int c \,\mathrm{d}V$ \sum $\sigma =$ grid

Wednesday, May 30, 12

Eddy diffusivity

• K estimates upstream of Drake Passage based on numerical tracer releases with a simplified numerical model (Klocker et al. 2012)

- K is suppressed in the upper ocean in the ACC latitude band
- suppression is not as strong as previously estimated

Wednesday, May 30, 12

Conclusions

 $k \sim 10^{-5} \text{ m}^2/\text{s}$ west of Drake Passage

 $k > 10^{-4} \text{ m}^2/\text{s}$ in Drake Passage

Topography plays a big role

Overall enhancement of k in the ACC above background levels is modest in the context of the global Meridional Overturning Circulation

Isoneutral k is difficult from floats alone—combined with models or altimetry <600m^2/s on 27.9 neutral surface

http://dimes.ucsd.edu. The web site is managed by the CLIVAR & Carbon Hydrographic Data Office (CCHDO)