Diagnosing Probability Models for
Observed Daily Precipitation Extremes
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Motivations
A rigorous view of extreme precipitation events in climate
requires a parametric approach.

Exponential tails may not be adequate to model
probabilities of high-frequency precipitation extremes in
volatile precipitation regions. We want to check how
adequate or inadequate they are.

Indications are that heavy tailed distributions may be
more appropriate for this task.

However, identifying and fitting heavy tails is difficult
» Typical methods involve graphical analysis
» There are many heavy-tailed distributions

» |dentification and parameter estimation needs to be
automated



Are precipitation extremes exponentially distributed?

If not, what is a reasonable distribution?

Heavy-tailed modeling of extreme event probabilities
»Heavy-tailed PDFs (power laws) allow for more extremes than traditional PDFs

»Arise naturally as limit sums of random variables

»Random variable X (e.g. precipitation) is "heavy tailed" if the probability (P) that
it exceeds a value x is of power order x* for large x

P(X>Xx)=cx*,as Xx — «, wherec, a >0



Approach

Peaks over threshold (POT) methodology

Three possible limiting PDFs for exceedances (approximations)

Balkema - de Haan - Pickands theorem (Balkema and de Haan 1974 and
Pickands 1975) provides the limiting distribution of exceedances. The
theorem says that when the threshold (u) increases, the distribution of the
exceedance XU converges to a Generalized Pareto (GP) distribution. Any
GP distribution has to be one of the following three kinds: exponential,
Pareto or beta (finite, not applicable). So: no matter what the original
distribution of X is, the exceedance X! over any threshold u is
(approximately) one of only three distributions (effectively two).

Moreover, if original distribution has exponential tails, then the exceedance pdf
will be exponential. If it has heavy tails, then the exceedance pdf will be
Pareto.

Using this result, we seek a statistic, a decision rule,
to classify observed daily precipitation tails into
exponential and heavy



Exponential vs. Heavy Tails

H : data comes from an exponential distribution, versus the alternative
H,: data comes from a Pareto distribution.

We approached this problem using ideas from the theory of likelihood ratio tests (Lehmann, 1997). The
approach is to consider the ratio of the maxima of the likelihoods of the observed sample under the null
(Pareto in the numerator) and alternative (exponential in the denominator) models. The logarithm of the

likelihood ratio statistic is: _
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Where Y is the observed sample (of excesses); L—P(,”_em(x|(1,.5‘) and Lexp(x|o') are the likelihood
functions of the sample under Pareto and exponential hypotheses, respectively. We use a Pareto
distribution with the survival function S(x) = P(X>x) = (1/(1+1/sa))® and exponential distribution with the
survival function S(x) = P(X>x) = exp(-x/o). In the Pareto case, the a parameter determines the thickness of
its tail and is of primary importance. The scale parameter s is of secondary importance. In the exponential
case O is the scale parameter.



Computation of L:
the maximum likelithood procedure

suplog(L., (X | o)) = n(~log(¥) - 1),
a>0

where X is the sample mean. The natural logarithm of the supremum of the Pareto
likelihood is

sup 10g(Lp,,er, (X | @, 5)) = n(log(a@) —log(s) —1-1/a),
a>0,5>0

where @ and § are the MLEs of & and § for the Pareto likelihood. The computation of
§ requires numerical maximization of the function

n
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u(r)=-log =l p + log(1) . > log(1+ x;f),
i=1

with respect to t > 0. If f is the maximum of u(t). then the MLE of § is §=1/f . The MLE
of d is
1

(1/n)3 log(1 +-1)
i=1 §

o=



Statistical Properties of L
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Boxplots of simulated distributions of L. The first five boxplots
were done using 10,000 observations of L from Pareto samples of
size 1,000 with a varying from 0.5 (first boxplot) to 5 (second to
the last boxplot). The last boxplot corresponds to 10,000
observations of L from exponential samples of size 1,000. The inset
blows up the last two boxplots.



Critical Values of L

Sample Significance level. y [and confidence (1 - ¥)*100]
size

0.01 [99%)] 0.02 [98%)] 0.05 [95%)] 0.1 [99%]
10 1.71128 1.1561 0.62701 0.25703
50 2.15057 1.5768 0.89045 0.48852
100 2.23171 1.71583 0.94963 0.55706
500 245615 1.85952 1.18044 0.70439
1,000 2.51298 1.92766 1.22475 0.71376
5,000 2.62019 1.97122 1.27738 0.76095
10,000 2.70307 2.0285 1.30714 0.80146
oo 2.70595 2.10895 1.35275 0.82120

Table 1. The entries are the (1-y)100 percentiles of the distribution of L for various
sample sizes and the limiting distribution (last row) of L. These are also critical numbers
for testing our hypothesis on different significance levels v.



Log likelihood ratio: all data

L values, absolute magnitude L values, H  rejection certainty in %
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Log likelihood ratio (L) computed for daily excesses over local 75 percentile at each of the 560 stations. (a) Values close to zero, L <=1 (blue and green x” s)
represent approximately exponential tails, while yellow, red and black circles represent progressively heavier tails. (b) Level of confidence, (1 - y)*100, for
rejecting the null hypothesis (H, ) of exponential tails. Blue x” s represent exponential tails, green X’ s represent stations at which the H_ cannot be rejected with
reasonable (90%) confidence. Yellow and progressively redder circles represent stations at which H_ can be rejected with 90, 95, 98 and 99% confidence in
favor of the Pareto alternative. For example, H_ can be rejected at 81% of stations with 95% confidence.



Log likelihood ratio: seasonal data

47% heavy with 95% confidence 51% heavy with 95% confidence



Probablhty plots for selected stations
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Probability plots for excesses over threshold (75t percentile) at selected stations arranged in order of increasing L. Sorted observed excesses displayed in mm
along the x-axis are plotted against the corresponding theoretical quantiles derived from the fitted exponential (blue x’ s) and Pareto (red o’ s) models.



PRECIPITATION STATISTICS AT SELECTED STATIONS

Precipitation Stats at Selected Stations

Station Log Plp > 0] | 75" %-ile(py-0) | Maxaw(p) | 100-yr event Pareto
likelihood Exp and Pareto | P[p > p, ']
ratio (L) (%) (mm) (mm) (mm) (%)
Sacramento 1.60 16 10.7 96 74 and 88 2.3
Nashville 3.15 26 16 153 111 and 138 34
St. Louis 493 30 11.2 142 103 and 133 4.1
Houston 15.2 27 16.3 253 179 and 276 6.5
Fargo 28.6 27 5.8 118 79 and 161 12.0
Miamu 41.8 36 13.7 377 167 and 332 9.8

Table 2. Precipitation statistics at selected stations for the common observational Ben'od 1950 -
2001: L; probability of precipitation (1.e. % of days with recorded precipitation); 75" percentile of
daily total on days with precipitation; maximum recorded daily total; the estimated 100-year
event assuming exponential and Pareto tails; and the Pareto probability of exceeding the
exponential 100-yr event. The last column can be interpreted as the factor by which the 100-yr
event estimated assuming exponential tail 1s more likely to occur assuming Pareto tail
Alternatively, the Pareto return period for an exponential 100-yr event 1s 100 years divided by the
value 1n the last column at a specific station.



Summary

Diversity 1s the mother of volatility

Exponential tails are inadequate to model daily
extremes in most regions of North America

Heavy tailed models are appropriate on theoretical
and empirical grounds

These results can be directly extended to many
climatic studies and applications

What about climate change?
How do climate models do?



* Climate Change Challenges _

The choice between heavy tailed and exponentially tailed models
1s of a qualitative nature. The heavy tailed distributions have
much larger high percentiles relative to the rest of the data
values than the exponentially tailed ones. That implies that in
places where heavy tailed models are appropriate, the future
large events may be much larger than those observed up to
date. The exponentially tailed models of precipitation will not
be able to predict very large (relative to the observed data)
events, because their mathematical properties do not allow
such extremes.

There 1s also the problem of non-stationarity...



