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Outline of Talk: 
•  Why? (Why examine the large scale 

meteorological patterns, LSMPs 
during extreme weather?) 

•  How? (How do statistical procedures 
identify LSMPs and how might one 
examine that information?) 

•  What? (What do the LSMPs look like, 
what do they indicate about the 
meteorology operating, what do they 
say about a model simulation?) 

•  Summary 

© AP 
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California ‘CV’ Geography 
•  Application to the workshop 

provided dataset max/min T 
–  California Central Valley (CV) 

station data, BFL, FAT, RBL 
–  Hot spells, CAOs 

•  CV extreme events. 
–  Most only last a few days 
–  Can have big impact 
–  Might not show up on monthly 

means. 
•  Short events, but important 

for climate. 
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Why?  

Why examine the large scale 
meteorological patterns -- LSMPs 
-- during extreme weather? 

Eiger N. face, Switz. © R. Grotjahn 
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Why examine LSMPs 
associated with extremes? 

•  Model surface values can be bogus for 
variety of reasons  
– Poor surface simulation,  
– Poor topographic resolution,  
– etc.  

•  Such problems can be alleviated by a 
regional model or by statistical 
downscaling – but both need the correct 
large scale flow, i.e. correct LSMP 
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CV Sfc T simulation versus obs. 
•  Distribution of daily 

max T values global 
model CCSM4 (fv 
1.1) versus 
observations at 3 CV 
stations 

•  Large negative bias, 
though std & skew 
‘ok’ 

•  Model topography 
has no CV (same 
contours in both topo 
maps). And, more 
than bias correction 
needed. 
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How? 

How do statistical procedures 
identify LSMPs and how might 
one examine that information? 

Mt Langley, climb CA, © R. Grotjahn 
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Statistical technique of event 
identification (part 1) 

•  Remove seasonal cycle of rise and fall (even 
winter and summer)  

•  Find long term daily mean (LTDM) annual 
cycle 

•  Subtract LTDM value from raw data to create 
anomaly fields.  

•  Anomaly fields make every date in the 
season intercomparable for that station. 

•  Anomaly fields replace absolute thresholds 
with relative thresholds. (Absolute thresholds 
important in some applications) 
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Statistical technique of event 
identification (part 2) 

•  Anomaly values are not intercomparable for 
different stations since variability differs 

•  Normalize anomaly values by the long term 
daily standard deviation for each station.  

•  Different stations can then be averaged.  
•  While variance information is lost, the 

purpose is to identify ‘target dates’ during 
which extreme values were widespread in 
relative sense (relative to the LTDMs) 
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Statistical technique: bootstrap 
•  Use CV-wide values above or 

below thresholds to identify 
target dates of extreme 
events. 

•  Define target ensembles from 
the target dates 
–  Composite various upper air 

variables 
–  T at 850 hPa composite 

shown at onset. 
•  What is significant in the 

LSMP? How consistent are 
the ensemble members? 

•  Use bootstrap for significance 
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Statistical technique: bootstrap 
•  Bootstrap resampling (with replacement) 

compares target ensemble to distribution 
from random ensembles of the same size 
–  Draw ‘random’ dates. Form many (1000) 

composites of such ‘random’ ensembles at 
each grid pt.  

–  Obtain distribution at each grid point 
–  See where target ensemble value lies 

relative to the distribution of random 
ensembles at each grid point. 

–  Highest 10 is highest 1% of values (Yellow 
shading) Lowest 10 are lowest 1% (Blue) 

•  Variations:  
–  Times before onset as well. 
–  Create time sequences leading to onset 
–  Anomaly data = raw data minus long term 

daily mean (LTDM) for each grid pt. 
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Some ensemble statistics notes: 
•  Other considerations 

–  Compare same time of day (diurnal cycle) 
–  Global statistical assessment of the map (how many 

pts are signif. vs the number expected by chance) 
–  Regional significance: may diminish with distance for 

similar structures of varying wavelength.  
–  Test consistency as well (standard deviation of target 

ensemble members vs same for random ensembles; 
subjective comparison of the members; and ‘sign 
counts’.) 

T 850 
Shading: some pts by chance http://atm.ucdavis.edu/~grotjahn/EWEs/hard_freeze/hard_freeze.htm 

Don’t mix 
12GMT 
& 0GMT 
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Ensemble 
members & 
target mean 

•  Pattern (anomaly 
shown) varies between 
the individual members 

•  Parts of the pattern are 
highly consistent and 
worthy of identification 
& study 

•  ‘Sign counts’ is one 
simple way to identify 
key parts of the target 
ensemble 

Ensemble ave. 
 
Top 15 cases 

Example: 
T anomaly 
 @ 850 
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Sign Counts 
•  Identify areas of consistent 

sign between the members 
of the target ensemble at 
each grid point. 

•  Net tally of the sign from the 
ensemble members is the 
‘sign count’ at each grid pt.  

•  Example: ensemble of the 16 
hottest days in CV during a 
‘training period’ (1979-88) 

•  Sign count is sum of +1 for 
>0, -1 for <0 at a grid point of 
all 16 target ensemble 
members. So, +16 means all 
16 members had positive 
sign at that grid point. 

Example: Target composite and sign 
counts for 16 events. T850 hot 
consistently at & 10o west of CV 
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LSMP ‘index’ 
•  Make un-normalized projection of daily field onto target ensemble 

–  Could use model, observational, or reanalysis data 
•  Project only at grid pts in select (ad hoc) regions 

–  Near CV (to reduce sensitivity to large scale wavelength variation) 
–  Only where highly consistent between extreme events (high sign counts)  

–  Indicated by ‘holes’ on this slide 

Example: sign counts for 16 events. 
V700 anomaly consistently 10o west 
of normal location 

Example: sign counts for 16 events. 
T850 hot consistently over and 10o 
west of CV 
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Extreme value analysis of 
‘index’ 

•  ‘Index’ measures strength of LSMP,  
•  highly correlated with extreme values of governing 

parameter (e.g. high index values and high surface T 
for hot spells) 

•  Index reduces complex daily pattern to single number 
each day. Over time index has a distribution whose 
relevant tail is approximating the extreme studied. 

•  Various extreme statistical analyses can be applied to 
the tail of the index distribution as one might do with 
the surface data. (see next talk)  

•  The difference is the index measures the larger scale 
environment during the local extreme.  
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What? 

What do LSMPs look like?  
What meteorology do they indicate? 
What do they say about a model simulation? 

Mt Whitney from Mt Muir, CA, © R. Grotjahn 
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Example: CV hot spells LSMPs 
•  Example target composites from 

severe heat waves (onsets) affecting 
Ca CV. 

–  T at 850 hPa 
–  V at 700 hPa 
–  Z at 700 hPa 

•  Conclusion: very large scale pattern.  
–  Highly significant >99% level 
–  Grotjahn & Faure, WAF, 2008 
–  More posted on web, including 

lead-up 

T 850 

Shading: V 700 

Z 700 

http://atm.ucdavis.edu/~grotjahn/EWEs/heat_wave/heat_wave.htm 
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Local impact of LSMP 
•  Large scale pattern 

–  Ridge-trough-ridge across Pacific, Ridge in SE 
•  T 850: (fig a) 

–  T maximum (anomaly) at and off shore 
•  SLP: (fig c) 

–  ‘Themal low’ at shore or offshore 
–  Unusually high SLP inland (upper ridge shifted west) 
–  Low level P gradient opposes cooling sea breeze 

•  Surface winds (fig d; shading for zonal component) 
–  Offshore flow (also downslope; though more complex than this 

reanalysis data) 
•  ω at 700 hPa (fig b;) has large scale sinking 

–  Creates strong low level subsidence inversion 
–  Elevated T in lower atmosphere 
–  Solar heating of shallow bndy layer 
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CV hot spells: 
•  Variations:  

–  Times before 
onset as well. 

–  Create time 
sequences 
leading to onset 

•  Equivalent 
barotropic with 
upstream and 
downstream 
components: 
•  Z 300 hPa 
–  36hr-0hr 
•  Z 700 hPa 
–  36hr-0hr 
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CV hot spells: 
•  Variations:  

–  Times before 
onset as well. 

–  Create time 
sequences 
leading to onset 

•  Equivalent 
barotropic with 
upstream and 
downstream 
components: 
•  Z 300 hPa 
–  36hr-0hr 
•  Z 700 hPa 
–  36hr-0hr 
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Example: CV CAOs LSMPs 
•  Example target composites from cold air 

outbreaks (onsets) affecting Ca CV. 
–  T at 850 hPa 
–  Z at 500 hPa 
–  Wind at 700 hPa (shading for v) 

•  Composites: very large scale pattern.  
–  Highly significant <1%; >99% levels over 

large areas. 
–  Yellow means: grid pt value highest 1% 
–  Blue means: grid pt value lowest 1% 
–  Grotjahn & Faure, WAF, 2008 
–  More posted on web, including lead-up 

T 850 

Z 500 

http://atm.ucdavis.edu/~grotjahn/EWEs/hard_freeze/hard_freeze.htm 

T=0 onset 
Shading: V700 
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CV CAOs 
•  Variations:  

–  Times before 
onset as well. 

–  Create time 
sequences 
leading to onset 

•  Equivalent 
barotropic with 
upstream and 
downstream 
components: 
•  Z 300 hPa 
–  60hr-0hr 
•  Z 700 hPa 
–  60hr-0hr 
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CV CAOs 
•  Variations:  

–  Times before 
onset as well. 

–  Create time 
sequences 
leading to onset 

•  Equivalent 
barotropic with 
upstream and 
downstream 
components: 
•  Z 300 hPa 
–  60hr-0hr 
•  Z 700 hPa 
–  60hr-0hr 
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LSMPs in CCSM4 vs reanalysis 
•  Target ensembles from hot spells in both data systems 
•  Model LSMP pattern similar (basic dynamics) 
•  Biases: Model LSMP too weak in general; T anomaly 

centered onshore so some local processes missed. 

Ensemble mean fields. 
850mb T anomaly: a) in 
NDRA2 (NCEP/DOE 
AMIP II), c) in CCSM4. 
700mb v: b) in NDRA2, 
d) in CCSM4. CCSM4 
based on extreme 
surface max T values 
at grid pts near coast. 
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Histograms of ‘index’ that 
measures LSMP strength 

•  3-stn vs ndra2 vs CCSM4 pilot 
scheme circulation index. 

•  CCSM4 std dev too small: 
–  3-stn, NNRA1, CCSM4 
–  1.01,   0.90,     0.79 

•  Skew: 
–  3-stn, NNRA1, CCSM4 
–  -0.36,   -0.16,     -0.11 

•  Hottest days in model will be too weak, too 
infrequent 

–  Top 1% 33 vs 71 over 55 yrs. (9 vs 24 1979-98) 
•  Coldest days will be missed in model, too 
•  Large scale errors cannot be overcome by an 

RCM 
•  Extreme statistics can be applied to the tails 
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Summary 

•  Why? 
–  LSMP patterns may be present during extreme events.  
–  LSMPs are large, well resolved by GCMs 
–  LSMPs are key to RCM and statistical downscaling 

•  How? 
–  Select target days 
–  Composite upper air fields on target days to get LSMPs 
–  Identify significant areas using bootstrap method 
–  Identify consistent areas (e.g. sign counts) 
–  Note other statistical issues 
–  Project LSMP pattern onto corresponding field for each map time to 

obtain an index upon which other analyses can be done 

•  What? 
–  Composites are LSMP patterns, but focus on significant, consistent areas 
–  LSMPs illuminate synoptics of the extreme event type 
–  Use LSMP as analysis tool (dynamics, climate trends, model biases) 

Miter Basin, CA, © R. Grotjahn 


