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Liquidus condition: 

Heat balance: 

Salt balance: 
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Interfacial shear stress: 
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Turbulent fluxes: 

Most (~75% for heat; ~99% for 
salt) change occurs across the 
sub-layer. 

Transfer is mainly by molecular 
diffusion within the sub-layer, but 
its thickness is determined by the 
turbulent velocity scale. 



Cd                                  ΓT, ΓS 

Almost entirely unknown for 
ice shelves/tidewater glaciers. 
 
Typically assumed to be ~10-3. 
 
Similar to values estimated for 
sea ice and the seabed. 

Almost entirely unknown for 
ice shelves/tidewater glaciers. 
 
Expressions taken from 
laboratory experiments or sea 
ice observations. 
 
Dominant role of the molecular 
processes in the interfacial 
sublayer suggests that values 
should be broadly applicable. 
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If we assume melting has no impact on plume buoyancy, then in 
an unstratified environment there is a simple solution (if we also 
neglect the pressure dependence of the freezing point): 
 
constant velocity,  
 
linearly increasing thickness, 
 
constant buoyancy flux, 
 
constant thermal driving, 
 
and constant melt rate, 
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The melt rate can therefore be written as: 

Physical 
constants 

Geometrical 
factors 

Cube root of 
buoyancy flux at 
grounding line 

Ambient 
thermal 
driving 

For a vertical ice face: 1sin =α
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Summary I 
•   Physics of the turbulent ice-ocean boundary layer beneath sea is 
fairly well understood. 

•   Parameterisations of turbulent transfer are well tested against 
observation, but those observations inevitably sample a limited 
range of conditions. 

•   Parameterisations should be readily transferable to ice shelves 
and tidewater glaciers, particularly the latter. 

•   There are very few observations to confirm or refute that, 
although data are now being collected beneath ice shelves. 

•   Sampling near a vertical ice face is challenging! 



•   Plume theory has been applied successfully to understand the 
fundamental behaviour of buoyancy-driven boundary currents. 

•   Once again, the theory should be more applicable to tidewater 
glaciers than ice shelves. 

•   Again there are no observations to support that claim. 

•   Recent work (Xu et al, 2012; Sciascia et al, in press, several 
posters presented here) have applied 2 and 3 dimensional ocean 
models to the vertical ice face problem.  

•   Very high resolution, non-hydrostatic codes are required to 
capture the processes. 

•   That makes the problem challenging for large-scale models! 

Summary II 


