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Tropical cyclones and climate

Lines of evidence:

* Geologic evidence (paleotempestology) % Hurricane Carol
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Photos courtesy of Kam-biu Liu (LSU) and Jon Woodruff (U. Mass.).



TAHAA
Percent > 250 um

Holocene sedimentary core from Tahiti (16°S)

Larger grains deposited when storms over wash site.
Note (for later) highest activity prior to 3.8 kya...
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Sedimentary core from Laguna Playa Grande

on Vieques, Puerto Rico

Woodruff and Donnelly 2007
Woodruff et al. 2008

Bulk mean grain-size (mm)
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ENSO over HOIOCE“E Periods of higher storm deposition

Moy et al. 2002 /\
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5500 yrs. before present and earlier:
no storm deposition records
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Moy et al. record broadly consistent with Clement et al. E
predictions of reduced ENSO in early and middle Holocene
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Pliocene climate and permanent El Nino

Federov et al. (2010) downscaled storms following Emanuel (2006)
but for warmer Pliocene conditions.
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Present-day orbital geometry
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Middle Holocene orbital geometry
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Perihelion moves 1 day every ~57 years
Mid-September 6ka
Early January today
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TOA solar radiation anomalies 10000 BP

latitude




TOA solar radiation anomalies 9000 BP

latitude




TOA solar radiation anomalies 8000 BP
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TOA solar radiation anomalies 7000 BP
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TOA solar radiation anomalies 6000 BP

latitude




TOA solar radiation anomalies 5000 BP
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TOA solar radiation anomalies 4000 BP
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TOA solar radiation anomalies 3000 BP
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TOA solar radiation anomalies 2000 BP
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TOA solar radiation anomalies 1000 BP
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TOA solar radiation anomalies over the
months qf current fcropical cyclone seasons
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Storm Season potential intensity and SST
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Difference in potential intensity at Mid-Holocene
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Change in moist entropy at Mid-Holocene
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Genesis potential during Mid-Holocene
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Seasonal cycle of genesis potential during Holocene
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Last Glacial Maximum: 21,000 years ago

Second Paleoclimate Model Intercomparison Project (PMIP2):
» 7 coupled ocean-atmosphere models form an ensemble here
* CO, was 185 ppm

* Tropical temperatures were 2-3°C cooler than today

* As much as 30°C colder over land where there was ice



Potential intensity and SST today
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Potential intensity and SST at the LGM
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LGM - control: potential intensity and ASST
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Incubation parameter

Vertical wind shear, entropy (humidity) deficits, and potential intensity can be
combined into a non-dimensional parameter

Vsh(s* - sm)
VPI (S:; - Sb)

The smaller it is, the faster development occurs (Rappin et al. 2010)
Cold climates have smaller s* - s, than warm ones (RH ~ constant)

Several empirical genesis potential indices have forms inversely proportional to this
parameter (Tang and Emanuel 2012)
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Seasonal cycle of genesis potential at LGM
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Behavior in hot climates

In collaboration with Matthew Huber (Purdue), we have also
calculated genesis factors for simulations designed to replicate
aspects of early Cenozoic climate with CCSM.

Among the set are some that retain present-day geography but
have increasingly high levels of CO,. They are coupled to a slab
ocean model with fixed ocean heat transport.

The series begins with a run using preindustrial era values (280
ppm) and subsequent runs consecutively double levels five times.

* 560 ppm

* 1120 ppm
* 2240 ppm
* 4480 ppm
* 8960 ppm



Genesis locations (355 ppm)
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Red: explicit vortices



Genesis locations (2240 ppm)

Red: explicit vortices



Genesis locations (8960 ppm)

Red: explicit vortices



Frequency (number of events)

Downscaled storms
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Lessons from paleoclimate model simulations

Last several millennia (Holocene epoch):
* Top of atmosphere radiation anomalies owing to perihelion cycle
* Shifts seasonal cycle of genesis factors, but not annual potential

At LGM, potential intensity changes coarsely follow ‘relative SST’

In hot periods, total count responds differently through 8 x CO,:
* Declines in explicitly tracked vortices
* Increases slightly in downscaled experiments
* But rises in the hottest states using both techniques
* Moist adiabatic lapse rates allow extratropical genesis in hot case
* Both weak and strong downscaled events increase in hotter cases



Summary

Shift in seasonal cycle of genesis potential from the large-scale
environment’ s response to Mid-Holocene TOA deviations

Major equatorial volcanic eruptions have the potential for substantial but
short-lived effects on tropical cyclones

Downscaled cyclones respond differently from explicitly simulated events,
exhibiting no decline in weak systems.

LGM genesis factors have mixed signs—areas that cooled less than tropical
mean become more favorable despite the colder state.



Downscaled storms; CO, 355 ppm
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Downscaled storms; CO, 2240 ppm
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Downscaled storms; CO, 8960 ppm
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Downscaled storms; CO, 355 ppm
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Explicitly resolved “TCs” (T42 resolution)



Downscaled storms; CO, 2240 ppm
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Explicitly resolved “TCs” (T42 resolution)



Downscaled storms; CO, 8960 ppm
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