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A USAMOC program near-term goal

eFurther study is required to understand the
connections between AMOC/North Atlantic SST
and climate variability elsewhere, the physical
mechanisms of these teleconnections, and the
related impacts on humans and ecosystems.



Atlantic multidecadal variability



North Atlantic observed SST variabllity
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North Atl. (eq. to 60°N) averaged SST anomaly, 1856-2009:
Color bars show the annually averaged SST anomaly, the solid line is the
10 year lowpass anomaly.



Atlantic Multidecadal Oscillation: a distinct pattern

of low-frequency surface temperature variabill
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Separating forced and internal
Atlantic multidecadal variability

- solid black line = observations
- dashed black line = multi-model average
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Ting et al. (2009) applied S/N
maximizing PCA to 9 CMIP3
Coupled models that
provided multiple 20" century
realizations to estimate the
externally forced change
and subtracted it from the
observed No. Atl. SST
average to estimate signal of
internal variability.




CMIP3 20th century variability
Ting et al. [ 2009; 2011]
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Ocean role in AMV - link to AMOC



Bjerknes (1964) in Atlantic air-
sea interactions ...

1904, 1913, 1920

mirve

... pointed out that there are two patterns of
Atmo/Ocean variability in the North Atlantic -
fast and slow. The slow (multi-year) pattern
displays spatially uniform SST variations and a
different ocean-atmosphere relationship than
the fast one.

Interannual variability is driven by atmospheric
wind fluctuations:

strong westerlies = cold subpolar gyre

weak westerlies = warm subpolar gyre

Multi-yeat variations are driven by changes in ocean
heat transport:

Uniform warming of No. Atlantic = weak subtropical
anticyclone (& weak westerlies in the north)

Figure from Bryan and Stouffer (1991) after Bjerknes (1964)
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NCEP reanalysis O/A fluxes support
Bjerknes hypothesis: On multidecadal
timescales the atmosphere is heated
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Inter-annual

variability
THE OCEAN IS COOLED &
WARMED BY ATMOSPHERIC
CONTROLLED SURFACE

HEAT FLUXES & OHT BY
EKMAN TRANSPORT
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Surface response to
AMOC collapse

60N

30N

e Typical Coupled GCM
(here GFDL CM2.1)
response to a 1-Sv 30S
AMOC water-hosing
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Climatic impacts of AMV



Cold
Obsewed Zoth Warm trop. Atl. & Warm East p Eurasian

Intense Hurricanes Mediterranean winters?
AN Warm SMp &

subpolar
No. Atlantic

-2.50

Ia

-1.50

°C per 1°C of theg

-0.50 0.50 1.50 2.50

Dry Middle
East

<

BIgYAUN
West

Wet African summer Rt
monsoon & ITCZ * _
shift Dry NE oL
Brazil

-B Wetter Asian
et summer

Monsoon

-0.950 -0.30 -0.10 0.10 0.30 0.50

PPT (mm/day per 1°C of the AMV index) Dry

Australia?



L% I S -

HummnecS:hear

Hurricane Number

1920 1940 1960 1 1980 2000_6

Normalized Unit Normalized Unit

Normalized Unit

(mis)

m/s

' "‘AH ',' .
=) :|| 1y \'I ,'_“4 |
Sahel Rainfall MODEL, |
4! \ .
_J India Rainfall | MODEL
3.
4 ()
1
0
-1
'i PC1 MODEL

) 11 \
!
Hurricane Shear Index

o
(I

MODEL

1920 1940 1960

1980 2000

Modeling AMV
impacts

Time series of Sahel and West
+Central India rainfall, and of
number of Atlantic hurricanes,
exhibit AMV time scales.

A coupled GCM with imposed
AMV SST change indicates these
changes are caused by AMV.

Zhang and Delworth (2006)



Response to AMOC
collapse
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e Typical Coupled GCM (here
GFDL CM2.1) response to
a 1-Sv AMOC water-hosing sos
experiment confirms
AMOC-AMYV link and the

climatic impacts. 90S -
30E 60E 90E 120E 150E 180 150W 120W S0W 60W 30W 0 30E
e SST (°C, color), surface 90N

wind stress (vectors, N/
m2), and precipitation
(green contours > 1.0 mm/ 3N
day and orange contours <
-1.0 mm/day intv. 1.0 mm/
day). | L e S 4t
e Okumura et. al. (2009) 505 R e
90S - =
30E 60E 90E 120E 150E 180 150W 120W S0W 60W 30W 0 30E

BT [ [ [ [
6 -5-4-3-2-1012 3 45 6

. 8 4 e
- . . w 4
- s " w - - .- - - - 5 N - -
- = . = ' . » . . 7
- - '.'-.b - » - - -
- » J - -
- = 2 o - “- s owom o
(;":S oams & . . . . Y - - -
L . - -
- - - . - D ]
e Sl < - . .
- -

60N

30S




CMIP5 multi-model AMV simulation

Regression of TS onto AMO Index
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® There is a broad model
agreement regarding the
global surface temperature
pattern associated with
AMV.

® There is no model
agreement on timescale
(for most model timescale
<< observed).
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e The similarity in the surface
temperature pattern in the
North Atlantic indicates a
common underlying
atmospheric or oceanic or
coupled mechanism
(AMOC related?)




Atmospheric circulation changes
(Ting et al., 2013)

Regression of SLP onto AMV Index (NDJF)  Regression of SLP onto AMV Index(JJAS)
(o) Observations (e) Observotions
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Mechanisms
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Levant rainfall
responds to AMV Kushnir and Stein (2010)

(a) Jerusalem annual (October-
September) prcp anomaly: annual
(color bars in mm) and low-pass
filtered (red line); low pass filtered SST
anomalies averaged over the
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0 A .
w (Y [N Y extratropical North Atlantic (30°N to
70°N) in units of 10-2 °C (in blue).
Anomalies are wrt 1961-1990.
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The regressions of SST on Jerusalem
precipitation. Colors indicate regions where
the values are significant at the 10% level
(non-directional). Data filtered with a 10-yr
low-pass. Units are °C per one standard z | >
deviation of the filtered seasonal precipitation * 7/
time series (~110 mm/yr).
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AMV Influences the west-east
Mediterranean seesaw

When the AMV is in its warm
- phase both surface and
: upper level flows over the
Eastern Mediterranean are
' southerly and cold air
incursions from Europe are
blocked, leading to reduced
cyclogenesis in the and
relatively dry weather in the
Levant.

The situation is reversed
A when the Atlantic is cold.
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Jerusalem hemispheric precip teleconnections point at

an “Atlantic governor”
J Kushnir and Stein (2010)
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Annual (Oct-Sep) Jerusalem precipitation correlated with precipitation in surrounding land
areas. Time series were smoothed by 1 pass of a binomial filter. Precipitation from GPCC
1930-1995. A correlation of 0.38 is significant at the 5% level (non-directional) assuming
every fourth sample in the record is independent of the other (Kushnir and Stein, 2010).
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AMV-East Asian monsoon connection

Zhang et al. (Sceince, 2008)
Comparisons among Wanxiang
Cave, hig-res ¢ 80 the Longxi
drought/flood index, Alpine
glacial records, and solar
irradiance during the Common
Era.
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Holocene
Millennial Tele-
connections

Holocene Dead Sea level
variations display anti-
phase relationship with
sub-Saharan lake levels on
epochal and millennial time
scales.

Kushnir and Stein (2010)
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Regression of anomalous
ASO Pl (m/s) on AMV (left
panels) and climate
change (CC) indices (right
panels). Regression
pattern of AMV and
GOGA (a), TAGA (c), and
IOPOGA (e) . Regression
pattern of CC index and
GOGA (b), TAGA (d), and
IOPOGA (f). The
difference between the PI
regression patterns in
GOGA and TAGA are
shown in (g) and (h) for
the AMV and CC patterns,
respectively. The region of
the main development
region (MDR) is indicated
by the black box.



Summary

e AMV is a prominent low-frequency phenomenon acting on a broad
range of time scales and is likely the surface expression of AMOC
variability.

e AMV impact climate in and around the Atlantic Basin as far as the
South Atlantic and Asia and affests decadal variations in global
surface temperature and precipitation.

e AMV played an important role in orchestrating significant multidecadal
to millennial variability across the NH and beyond, throughout the
past.

e Questions:

e \What are the dynamical mechanisms involved in shaping the AMV, particularly
its tropical arm?

e \What is the response of AMV to different sources of external forcing: solar,
volcanoes, CO2, aerosols?

e How do we build on the emerging predictive skill?



