A Framework for Ocean Observing: Best Practices for the Global Ocean Observing System

Eric Lindstrom
Physical Oceanography Program, NASA

John Gunn
CEO, Australian Institute of Marine Science

Albert Fischer
Director, GOOS Project Office, IOC/UNESCO

US CLIVAR Summit, July 2012, Newport Beach, CA, USA
Building a common vision for ocean observations

Provision of routine and sustained global information on the marine environment sufficient to meet society’s needs for describing, understanding and forecasting marine variability (including physical, biogeochemical, ecosystems and living marine resources), weather, seasonal to decadal climate variability, climate change, sustainable management of living marine resources, and assessment of longer term trends.
OceanObs’09: Calls for Action

(1) Calls on all nations and governments to fully implement by 2015 the initial physical and carbon global ocean observing system originally envisioned at OceanObs’99, and refined at OceanObs'09.

(2) Calls on all nations and governments to commit to the implementation and international coordination of systematic global biogeochemical and biological observations, guided by the outcomes of OceanObs’09, and taking into account regional variations in ecosystems.
OceanObs’09: Calls for Action

(3) Invites governments and organizations to embrace a framework for planning and moving forward with an enhanced global sustained ocean observing system over the next decade, integrating new physical, biogeochemical, biological observations while sustaining present observations. Recommendations on this Framework, considering how to best take advantage of existing structures, will be developed by an post-Conference working group of limited duration.

(4) Urges the ocean observing community to increase our efforts to achieve the needed level of timely data access, sensor readiness and standards, best practices, data management, uncertainty estimates, and integrated data set availability.

(5) Asks governments, organizations, and the ocean observing community to increase their efforts in capacity-building and education.
Framework for Ocean Observing

Sponsors and Team

Keith Alverson, Bee Berx, Peter Burkill, Francisco Chavez, Dave Checkley, Candyce Clark, Vicki Fabry, Albert Fischer, John Gunn (co-chair), Julie Hall, Eric Lindstrom (co-chair), Yukio Masumoto, David Meldrum, Mike Meredith, Pedro Monteiro, José Mulbert, Sylvie Pouliquen, Carolin Richter, Sun Song, Mike Tanner, Martin Visbeck, Stan Wilson

- IOC Intergovernmental Oceanographic Commission of UNESCO
- GEO Group on Earth Observations
- CEOS Committee on Earth Observation Satellites
- POGO Partnership for Observation of the Global Oceans
- SCOR Scientific Committee on Oceanic Research
- SCAR Scientific Committee on Antarctic Research
- GCOS Global Climate Observing System
- GOOS Global Ocean Observing System
- JCOMM Joint WMO-IOC Tech. Comm. for Oceanography and Marine Meteorology
- PICES North Pacific Marine Science Organization
- ICES International Council for the Exploration of the Sea
- CoML Census of Marine Life
- IGBP International Geosphere-Biosphere Programme
- WCRP World Climate Research Programme
Framework for Ocean Observing

High Level Objectives

- Take lessons learned from successes of existing observing efforts – **best practices**

- **Guide** observing community as a whole to sustain and expand the capabilities of the ocean observing system

- Deliver and observing system that is **fit-for-purpose**

- Promoting **collaborative alignment** of independent groups, communities and networks, **building on existing structures** as much as possible
Ocean observing system for climate – drawing from best practices

Requirements for Essential Climate Variables

Total in situ networks 62% December 2011

- 100% Surface measurements from volunteer ships (VOS)
- 250 ships in VOSclim pilot project
- 100% Global drifting surface buoy array
- 5° resolution array: 1250 floats
- 66% Tide gauge network (GCOS subset of GLOSS core network)
- 170 real-time reporting gauges
- 81% XBT sub-surface temperature section network
- 51 lines occupied
- 100% Argo profiling float network
- 3° resolution array: 3000 floats
- 62% Repeat hydrography and carbon inventory
Full ocean survey in 10 years

Transport monitoring 48%
Global time series network 34%
Global tropical moored buoy network 79%
Representative milestones

System % of initial goals

original goal for full implementation by 2010
Framework for Ocean Observing
A Simple System
Framework for Ocean Observing

Structure of the Framework
Driven by requirements, negotiated with feasibility

Essential Ocean Variables

- We cannot measure everything, nor do we need to
- basis for including new elements of the system, for expressing requirements at a high level
- Driven by requirements, negotiated with feasibility
- Allows for innovation in the observing system over time
Framework for Ocean Observing

Readiness

Increasing Readiness Levels

Concept: Initial articulation of ideas, and appropriate feasibility studies. Attributes: Peer review of ideas and studies at science, engineering, and data management community level.

Pilot: Plans evolve from draft to projects and vetted in real-world implementation. Attributes:Planning, negotiating, testing, and approval within appropriate local, regional, global arenas.

Mature: Requirements, systems, and data become elements of the sustained global ocean observing system. Attributes: Products of the global ocean observing system are well understood, documented, consistently available, and of societal benefit.
Framework for Ocean Observing

Societal Drivers 2012
Framework for Ocean Observing
Societal Drivers Next Decade

Regional
- Regional Seas
- CCAMLR

Fisheries
- FAO
- RFMOs

Ecosystem services/Biology
- CBD
- CSD
- WSSD

Assessments
- Global Marine (UN)
- TWAP (GEF)
- Regional

Real-time services
- Emergency support
- Ocean forecasting

Weather & Climate
- UNFCCC/IPCC
- WCRP
- Climate services

Additional
Requirements Observations Elements & Data Products
Framework for Ocean Observing Characteristics

- **Common language and consistent handling** of requirements, observing technologies, and information flow among different, largely autonomous, observing elements

- Seeks to **support self-funding and self-managing elements**

- **Essential Ocean Variables** as common focus

- Assessment and promotion of **Readiness**

- for coastal and open ocean

- An **“Integrated Observing System”** will be a derivative of an EOV-based approach driven by requirements.
Framework for Ocean Observing

Benefits

• For Ocean Observing Communities
 – **Focus on variables allows innovation**, research, while sustaining the key output of the observing system
 – Clear path to **selling utility** of observations to high level, articulation of societal importance
 – **learn from** best practices and principles of **other observing systems**
 – **reduce/remove duplication** of measurements
 – **Clearer entry points** for the needed coordination; cross-disciplinary positive **synergy**: shared platforms, data systems
 – other **data** available to set your data in context
Framework for Ocean Observing

Proposed Governance Structure

GOOS Steering Committee
(Peak Bodies, Sponsors, Observing Panel Chairs, Observing System leaders)

Observing System Panels
(focused on EOVs e.g. Physics, Carbon/Biogeochemistry, Biology/Ecosystems); Coordination for observing system elements

Technical Advisory Groups
(Observing technologies and networks, Variable focus: data and products, synthesis, link to models)
The Future of GOOS

• the system GOOS
 – collaborative system of sustained observations
 • built on requirements
 • in situ and satellite
 • operational and research funding
 • linked to data management and product generation activities
 • global-scale and coastal

• the GOOS programme
 – advocacy for all elements of the system
 – provide a platform for collaboration
 – promote global participation
 – animating Framework for Ocean Observing processes
 • in collaboration with other partners, adapting structures in stable and stepwise way, assessing and encouraging the readiness of components
 • integrating new observations while sustaining present ones
Framework for Ocean Observing

BACK-UP SLIDES
Framework for Ocean Observing

Governance Structure

Governance Structure for Sustained Global Ocean Observing

Framework Steering Group Members / Appointed by Sponsors
- Management
- Review/Development of Requirements
- Convention Negotiation
- Facilitate Community-wide Coordination and Alignment
- Endorsement of Mature Elements

Ocean Observing Panels / Appointed by Steering Group

<table>
<thead>
<tr>
<th></th>
<th></th>
<th></th>
</tr>
</thead>
<tbody>
<tr>
<td>Build on OOPC</td>
<td>Build on IOCCP and related projects</td>
<td>Could draw on PICO Plan</td>
</tr>
</tbody>
</table>

Expert Reviews
- Develop new EOVs
- Articulate Best-practices
- Assess Readiness Levels
- Review and ensure fit-for-purpose system outputs among EOVs
- Develop Implementation Strategies
- Coordinate National, Regional, Local Activities

EOV Expert and Implementation Teams / Identified by Steering Group & Panels

EOVs: SST / Sea Level / pCO2* / Plankton* / Alkalinity* / Transport* / Other* (*-potential)

Observing Element Implementation Teams
- Improve Readiness Levels (Design Pilots, New Products)
- Develop Implementation Plans
- Improve Literacy (Train experts, Educate Users, Facilitate Integration)
- Coordination
Framework for Ocean Observing Boundary

Outside the Framework

Facilitated by the Framework:

- Quantitative Analysis
- Application of Science to Societal Issues
- Qualitative Analysis
- Policy Questions

Societal Issues

- Requirements: Sensors and Scales
- What to Measure: Essential Ocean Variables
- Observations: Facilities and Management
- Data: Infrastructure and Assembly Centers
- Information: Products and Services

Decision Guidance

↓ ↓ ↓ ↓

Issue Influence
Framework for Ocean Observing

Roles

<table>
<thead>
<tr>
<th>Functional Groups</th>
<th>Primary Activities</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oversight & Coordination</td>
<td>Groups that have as their primary purpose to review the development of information requirements in response to societal needs align ocean observing activities accordingly. These groups will also bring partners together to coordinate and align their activities.</td>
</tr>
<tr>
<td>Expert EOV Reviews</td>
<td>Groups that align to evaluate best-practices, and to design and assess the feasibility of building and managing the ongoing measurements required to study and understand an EOV. They respond to needs for information and review or develop the requirements of EOVs. Through evaluation of the needs for standardization and innovation along with readiness levels they then develop EOV an implementation strategy.</td>
</tr>
<tr>
<td>EOV Implementation</td>
<td>These groups are the basic unit and core of the observing system. They are communities that form around common challenges on a type of observing platform, steering the development of particular networks. They can also be communities that focus on data management challenges, or the production of integrated data products focused on a particular EOV. They can also have a regional focus. Their inclusion in the Framework is mutually beneficial, providing the team with guidance and connection to societal benefits, and providing the Framework with substance.</td>
</tr>
</tbody>
</table>
Framework for Ocean Observing

Data and Information Products

Data Management & Information Products Activities within the Framework

<table>
<thead>
<tr>
<th>Functional Groups</th>
<th>Primary Activity</th>
</tr>
</thead>
</table>
| Oversight Panel (Oversight & Coordination) | • Feedback into Requirements
 • Process & Validation of Requirements |
| Expert Teams (Expert EOV Reviews) | • IT & Data Management Teams
 • Latency, Aggregation
 • Promotion of Standards & Interoperability |
| Implementation Communities | • Verification and Validation
 • Definition & Data QC
 • Product Development |
Framework for Ocean Observing Observations

Coordination of Observation Element Activities within the Framework

<table>
<thead>
<tr>
<th>Functional Groups</th>
<th>Primary Activity</th>
</tr>
</thead>
<tbody>
<tr>
<td>Oversight Panel</td>
<td>• Governance</td>
</tr>
<tr>
<td>(Oversight & Coordination)</td>
<td>• Deployment</td>
</tr>
<tr>
<td></td>
<td>• Commitments</td>
</tr>
<tr>
<td>Expert Teams</td>
<td>• Identify Synergies & Best Practices</td>
</tr>
<tr>
<td>(Expert EOV Reviews)</td>
<td>• Promote Standards</td>
</tr>
<tr>
<td></td>
<td>• Technology Infusion</td>
</tr>
<tr>
<td>Implementation Communities</td>
<td>• Trade-Space Determination</td>
</tr>
<tr>
<td>(Observing Element Teams)</td>
<td>• Quality Control</td>
</tr>
<tr>
<td></td>
<td>• Technology & Standards Maturation</td>
</tr>
<tr>
<td></td>
<td>• International Cooperation</td>
</tr>
</tbody>
</table>
Framework for Ocean Observing Requirements

Requirements Activities within the Framework

<table>
<thead>
<tr>
<th>Functional Groups</th>
<th>Primary Activity</th>
</tr>
</thead>
</table>
| Oversight Panel (Oversight & Coordination) | • Requirements
• What to Measure
• Variables (EOVs) |
| Expert Teams (Expert EOV Review) | • Sampling Requirements
• Implementation Strategies |
| Implementation Communities (EOV Implementation) | • Feasibility Assessment
• How to Measure |
Framework for Ocean Observing

Readiness Levels and Elements

<table>
<thead>
<tr>
<th>Highest Readiness Level</th>
<th>Requirements</th>
<th>Observations</th>
<th>Data & Information</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mature</td>
<td>• Sustained: standard quality, periodic review, interoperable</td>
<td>• Mission-qualified: stability, scalability, utility</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Fitness-for-purpose: validation, peer review</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Pilot</td>
<td>• Operational: refinement, implementation plans, demonstration</td>
<td>• Verification: sampling, governance, standardization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Trial: at sea, operational projects, management practices</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Concept</td>
<td>• Proof-of-concept: feasibility, scalability, credibility</td>
<td>• Documentation: strategic and tactical descriptions, socialization</td>
<td></td>
</tr>
<tr>
<td></td>
<td>• Idea: identification, formulation, specification</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Legend:
- **App:** Applications
- **OceanITES:** Ocean Information Technology Enterprise Services
- **OSI-MOS:** Ocean Science Information - Marine Observation System
- **IDOS:** International Data and Information System
- **VOR:** Virtual Oceanography Research
- **EOOP:** Earth Observation Ocean Products
- **Satellite:** Satellite Data
Framework for Ocean Observing

Readiness and Elements

- **Mature**
 - Requirements: Sensors & Scales
 - What to Measure: Essential Ocean Variables

- **Pilot**
 - Observations: Facilities & Management
 - Data: Infrastructure & Assembly Centers
 - Information: Products and Services

- **Concept**
 - Requirements Setting
 - Essential Ocean Variables

- **Lowest Readiness Level**
Framework for Ocean Observing

Readiness and Requirements

Requirements

Mature
- Sustained implementation and under periodic review
- Mission qualified at regional and/or global scale
- Consensus on observation impact or fitness-for-purpose

Pilot
- Deployment in an operational environment
- Verification of the spatial and temporal sampling strategy
- Measurement strategy verified by sea trial

Concept
- Proof-of-concept determined via feasibility study
- Measurement strategy documented
- Environment information identified
Framework for Ocean Observing

Readiness and Observations

- **Mature**
 - System is sustainable globally and under periodic review
 - Implementation details fully qualified
 - Peer review and deployment demonstrate fitness-for-purpose

- **Pilot**
 - Maintenance and servicing logistics operationalized
 - International commitments to sustaining components verified
 - Trial project in an operational environment

- **Concept**
 - Operational, scalable, and technology proof-of-concept
 - Observing platforms technology and design are documented
 - Idea for measuring system is formulated
Framework for Ocean Observing

Readiness and Data and Info Products

<table>
<thead>
<tr>
<th>Highest Readiness Level</th>
<th>Data Management and Products</th>
</tr>
</thead>
<tbody>
<tr>
<td>Mature</td>
<td>• Sustained products available and under user group review</td>
</tr>
<tr>
<td></td>
<td>• Data globally available and of service to the community</td>
</tr>
<tr>
<td></td>
<td>• Data management and distribution determined to be fit-for-purpose</td>
</tr>
<tr>
<td>Pilot</td>
<td>• Data operational through system-wide availability and use</td>
</tr>
<tr>
<td></td>
<td>• Data and archival plans and practices verified</td>
</tr>
<tr>
<td></td>
<td>• Data management practices determined and tested for quality and accuracy throughout the system</td>
</tr>
<tr>
<td>Concept</td>
<td>• Data model proven to meet observational needs</td>
</tr>
<tr>
<td></td>
<td>• Interoperability model is documented and socialized</td>
</tr>
<tr>
<td></td>
<td>• Data model is identified and articulated</td>
</tr>
</tbody>
</table>
Why a Framework?

- OceanObs’09 identified tremendous opportunities, significant challenges

- Called for a framework for planning and moving forward with an enhanced global sustained ocean observing system over the next decade, integrating new physical, biogeochemical, biological observations while sustaining present observations
IOOS Summit
A New Decade for an Integrated and Sustained Integrated Ocean Observing System
November 13-16, 2012 | Hyatt Dulles, VA

ERIC LINDSTROM
IOOS SUMMIT CO-CHAIR

Presentation at US CLIVAR Summit
19 July 2012
IOOS Summit Vision

Why an IOOS Summit?
- To bring together community leaders to develop a coordinated strategy
- To better integrate regional, national, and global efforts

What do we want to achieve?
- A clear understanding of progress made toward achieving IOOS in the last decade
- A fundamental understanding of the requirements needed to maintain IOOS
- A strong community consensus on the way forward for the next decade

How do we ensure success?
- Solicit the community through written submissions prior to the meeting
- Ensure broad representative participation at the meeting
- Identify strategies for enhancing IOOS capabilities in the next decade
Strawman Agenda Structure

Day 1 (Opening)
- Opening
- Decade of Progress
- Perspectives
- Early Successes
- Reception

Day 2 (Requirements)
- Marine Ops
- Climate
- Biology
- Water Quality
- Hazards
- Security

Day 3 (Observing)
- In-Situ
- Remote Sensing
- Modeling
- DMAC
- Interoperability

Day 4 (Programmatic)
- Obs to Policy
- Research & Development
- Partnerships & Collaboration
- Capacity Building
- Research to Ops

Highlighting the Past Decade of Progress
User Requirements: Revisiting and Updating

Observing System Capabilities: Gap Assessment

Vision for the Next 10 Years
Community White Papers

• Basic Template
 o Introduction/background/history/accomplishments
 o Technical and user requirements
 o State of the observing system and technology
 o Integration within IOOS modeling and DMAC
 o The way forward for the next ten years

• 5 Pages Max, 5 Figures

• DUE 20 JULY 2012
Summit Timeline

<table>
<thead>
<tr>
<th>2012</th>
<th>2013</th>
</tr>
</thead>
<tbody>
<tr>
<td>Apr</td>
<td>May</td>
</tr>
<tr>
<td>Expressions of Interest</td>
<td>White Papers Due</td>
</tr>
</tbody>
</table>

- **July 20 Deadline**
QUESTIONS
Backup Slides
White Paper Process

Community
- Writes and submits white papers providing content for the Summit

Organizers
- Categorize papers into 5 Summit chapters

Chapter Leads
- Coordinate writing groups through virtual or in-person meetings

Writing Groups
- Synthesize content to shape the Summit structure

Content made publically available
Community White Papers

- Informs a U.S. IOOS strategy over the next decade
 - Be “forward-looking”
 - Express new opportunities
 - Refresh existing plans
 - Explore new and evolving technology and information
 - Examine future requirements for user-needs
 - Identify contributions from new communities
Community White Papers

- Highlight benefits to IOOS Subsystems

Functional
- Observing
- Data Management & Communications
- Modeling & Analysis

Cross-Cutting
- Governance and Management
- Research & Development
- Training & Education
Community White Papers

- Style Guide (Recommended)
 - Opportunities for a specific element of U.S. IOOS
 - Specific requirement(s) for a U.S. IOOS user need
 - New technologies and their potential contribution to U.S. IOOS
 - Relevant partners required for the successful implementation
 - Actions for U.S. IOOS implementation over the next decade
 - Concise and action-oriented recommendations
Community White Papers

• Review Criteria
 o Quality (1-10)
 o Relevance (1-10)
 o Format (1-10)

• Scored by Chapter Leads and Summit Co-Chairs

• 30 top-rated submissions receive invitations
Community White Papers

1. How do you or your community currently interact with IOOS?
2. For you or your community what aspects of IOOS are critical to sustain?
3. What are your anticipated IOOS-related needs in the next ten years?
Towards a Deep Ocean Observing Strategy

Eric Lindstrom

US CLIVAR Summit, 18-20 July 2012
Deep Ocean Observing Strategy Workshop

• 30 March - 1 April 2011, Paris

• Objective: Develop a common statement of requirements and a first strategy for sustained global deep ocean observations for climate; considering all Essential Climate Variables, regions, and technologies to extract high priority and feasible actions for the next 5-10 years.

• Framework experiment in integration across disciplines: physics, carbon/biogeochemistry, biology/ecosystems
Relationship to Framework for Ocean Observing

- Framework structure being used to coordinate the writing team activities
- Readiness levels will be used to assess the fitness-for-purpose as related to the EOVs and associated observations and data products
- Oversight Panels, Expert Teams, and Implementation Communities structure will be used to organize conversation related to requirements, observations, and data products needs going forward
Rationale for deep ocean observations

Abyssal & Deep Heat Content Changes

(Purkey & Johnson, 2010)

Deep ocean ~1/7 of upper ocean change 1990s-2000s: source or limit to predictability?
Rationale for deep ocean observations

Column inventory of anthropogenic CO$_2$ below 2000 m (mol m$^{-2}$)

Based on Sabine et al. (2004)
Rationale for deep ocean observations

Naturally low saturation state at depth requires only little C_{anthro} to reach the “tipping point”
Rationale for deep ocean observations

Over 180 new species, 25 new genera and 2 new families have been described from deep-water chemosynthetic ecosystems since 2002.
Diversity never imagined

Angola Basin: > 800 different copepods, most new to science
Southern Ocean: > 700 different isopods, > 500 new to science
Observations

• Existing
 – Repeat hydrography and other deep hydrography
 • platform for many variables
 – Moored arrays (timeseries)

• Scaleable
 – OceanSITES moored array
 – Argo / deep profiling floats
 – Sensors for biogeochemical variables

• Potential
 – Deep gliders
 – Moored water sampling
 – Tomography?
Developing and selling a strategy

- Message the “unique challenges” of the deep ocean
- Need to get message to higher levels of government and science funding agencies about priority for deep ocean observations
- Need for disciplinary breadth – physics/climate, biogeochemistry, ecosystem, geophysics
- Formulate a global strategy for deep ocean from component elements (SOOS, Euro, USA, Japan, etc)
Deep Ocean Observing Strategy

Executive committee responsible for monitoring progress

- Eric Lindstrom (OOPC/FOO)
- Bob Molinari (WCRP/CLIVAR)
- Albert Fischer (OOPC)
- Kathy Tedesco (IOCCP)
- Bill Westermeyer (GCOS)
- Myriam Sibuet (post-CoML)

Three writing teams:

Climate and Physical Observations
- Gregory C. Johnson
- Bernadette Sloyan

Carbon, Biogeochemistry Observations
- Rik Wanninkhof
- Toste Tanhua

Biodiversity and Ecosystem Observations
- Myriam Sibuet
- Antje Boetius
- Lisa Levin
Report Outline

• Societal Issues that the observations will address
• Science questions that the observations will address
• Articulation of EOVs for each group
• Overview of current and required observing platforms, technologies and programs
• Data management strategy
• Strategies for integration through expert panels and implementation teams
What is our timeline and measure of success?

- Year One: June 2011 to June 2012
 - Created small writing teams
 - Held several teleconferences
 - Materials placed on OOPC website
 - Drafted initial text for the plan
 - Initiated informal roll-out of the concept to high-level groups

- In next two years:
 - Establish a development program
 - Incorporated into GCOS, CLIVAR, IMBER, COML-follow on activities

- In five years:
 - Pilot program underway

- OceanObs 2019
 - Global sustained coverage in sight