

Pardeep Pall Michael Wehner Daithi Stone

Large climate data sets in Probabilistic Weather-Event Attribution

25 Km

26/09/1979

Motivation: 'Big data' in the climate community

- The amount of data available for analysis within the climate community has increased substantially over recent years
- Due to increased resolution and sophistication of climate • models and observational products (~100km global to ~1km regional)
- [Show 25km resolution tropical cyclone movie]

•

- Also due to larger ensembles of simulations afforded by
- increased computing power (e.g. CMIP5, HadCRUT4) Here we show some examples of big data in the context of 'Probabilistic Event Attribution' of weather-related events to anthropogenic climate change

Motivation: Probabilistic Event attribution

Can't attribute any specific event because it could also have happened by chance in a non-anthropogenic climate

Can attribute *loading* in event *risk*, if:

 define climate as encompassing all weather states consistent with initial condition uncertainty

2) do this both with and without anthropogenic drivers

Probabilistic Event Attribution

"What <u>fraction of event risk</u> was attributable anthropogenic drivers?"

Loading the climate of the 'weather dice'

An example: UK Autumn 2000 floods

October & November 2000 floods occurred during the wettest autumn since record began in 1766

Nationwide impact resulting in £1.3 billion of insured losses

Worst floods since the snowmeltdriven floods of 1947

River Trent, Nottingham Autumn 2000

UK autumn 2000 floods: Hydrometeorology

Blackburn & Hoskins (2001)

- Common but anomalously strong 'Scandinavia' circulation pattern [Rossby wave-train]
 - → Eastward + southward displacement of NH jet strea m [More storms]
- 2. Persistent and repeated frontal depressions Not strong localised events

Precipitation anomaly

- → Three main precip events, over several day, triggering saturation and floods:
 9-12th October
 29-30th October
 5-9th November
- 3. Nationwide impact 10,000 properties flooded Transport and power disrupted
 - \rightarrow £1.3 billion insured losses

UK autumn 2000 floods: Experiment design

1. Simulate autumn 2000 weather using a detailed climate model, **both with &** without 20thC GHGs

[Use climateprediction.net

HadAM3-N144 model;

~95km resolution;

>10K simulations.1

2. Extract UK precipitation

Fig. 2 Coupled VIC-2L model and the routing scheme. $(W_1 \text{ and } W_2 \text{ are the upper and lower soil water contents; } E_c$ is the canopy interception evaporation; $E_1 \text{ and } E_2$ are the evaporatism from the two soil layers; E_n is the evaporation from bare soil; Q_d is the direct surface runoff; and Q_b is the baseflow. On the left are the two impulse response functions (IRF) for the internal gridbox routing and the river routing (see also Lohmann *et al.*, 1996)).

3. Feed into to a UK flood model

[Statistical precip-runoff model; Parameters derived from a more

comprehensive hydrologicalhydraulic model, based on

UK autumn 2000 floods: Result

20thC anthropogenic GHG emissions significantly increased the risk of floods occurring in England & Wales in Autumn 2000

Risk increases very likely (9-out-of-10 cases) by more than 20%, Risk increases likely (2-out-of-3 cases) by more than 90%

UK autumn 2000 floods: Experiment design

- Flood event was rare, so tried to capture it by generating several thousand weather simulations
- Beyond conventional computerediction.net

•

•

~150 – 450 MB RAM ~ 3 weeks to simulate 1yr

UK autumn 2000 floods: Analysis

Data analysis performed on a single processor desktop computer!

Manageable for a small region precipitation such as the UK

What about analysing and visualising larger regions and more complicated metrics?

UK autumn 2000 floods: Atmospheric teleconnection?

A proposed tropical catalyst for UK floods → **teleconnection**:

1. Eastward propagating upper-atmospheric flow from Pacific

200hPa velocity potential anomaly in October 2000, relative to ECMWF re-analysis climatology

Evidenced by observed:

- Divergence of air over Indonesian Pacific warm pool region
- Convergence of air over tropical South America

UK autumn 2000 floods: Identifying teleconnection nodes and streamlines

Velocity Potential

1) Search for minima/maxima (nodes) of upper-air velocity potential by comparing nearest neighbour cells

2) Seed particles in minima region

3) Advect particles through the wind field (streamlines) to

which reach a maxima

see

UK autumn 2000 floods: Parallelisation of teleconnection analysis

Each teleconnection identification calculation takes ??? on a ???

-> ~??? for ~10K simulations

Embarrassingly parallel problem

[Needed for calculating anthropogenic change in teleconnection frequency]

UV-CDAT Integrating CDAT, DV3D, ParaView, Vislt, and R

Templates Plots and Analyses

TECA: A Toolkit for Extreme Climate Analysis

Concept:

Two-step identification of extreme weather events in high frequency climate model data:

- 1. Search the data for candidate events at each individual time step that meet some defined criteria.
- Computationally intensive, but embarrassingly parallel across time steps
- 1. Stitch together candidate events at multiple time steps, rejecting candidates that fail continuity criteria.

Computationally cheap

GFDL hurricane tracking algorithm

1. Candidate detection

- Find local vorticity maxima at 850 hPa exceeding 1.6*10⁻⁴ /s
- Find closest local minima in sea-level pressure (storm center) and maxima in 300-500 hPa temperature (warm-core center)
- Surface pressure should increase by 4hPa from the storm center within a ~400km radius
- Warm-core and storm center should be co-located within ~200km

2. Stitching

- Search candidates within 400km radius over 6-hr window
- Closer, westward, and poleward candidates are preferred
- Trajectory should last for 2 days, and have max surface wind velocity >17m/s during at least 2 days (but not necessarily consecutively)

Documented in Knutson, et al. (2008) BAMS

TC detection: Computational Performance

- fvCAM5 ~0.25 degree 3 hourly output
 - 1979-2005 simulation period
 - 13 TB dataset (subset of 100TB)
- Ran detection step on up to 80,000 Hopper cores
 - Hopper is a NERSC Cray XE6 system with a high performance Lustre filesystem
 - Assigned 1 time step per processor core
- Detection step completed in ~1 hour; stitching in ~10 seconds
 - But 3 days in queue. Plus 3 days for tape transfer from archive.
- Comparable serial job would have taken ~9 years to execute on single core!

TECA: A Toolkit for Extreme Climate Analysis

Tracking is data intensive.

Scales poorly with resolution (in some cases as n⁴).

Often high frequency (3 or 6 hourly).

Can be I/O bound on the input side

Parallel processor tools are essential. 100TB of output in a 26 year integration of a ~25km global atmospheric model (fvCAM5.1) → effectively a few MB

- Currently, we have implemented:
 - Hurricane tracking
 - Extratropical cyclone tracking
 - Atmospheric river identification
 - Atmospheric blocking
- Other extreme event opportunities exist as well as other variants of the present set of feature tracking algorithms.

Designed by Prabhat, LBNL

How about a more systematic event attribution product?

 \rightarrow "Core" project of the WCRP CLIVAR C20C project.

Scientific aims:

 to characterise historical trends and variability in the probabilities of damaging weather events, including the differences across climate models

– to estimate the fraction of the historical, present, and future probabilities of damaging weather events that is attributable to anthropogenic emissions, and to characterise underlying uncertainties in these estimates.

Or in other words:

 to get O(10) modelling groups around the world to run
>O(20) atmospheric models in a semi-coordinated weather-risk-attribution framework

 – 50-member ensemble simulations per climate forcing, including 3-D daily output and 2-D 3-hourly output

 Any analysis must be conducted on a per-ensemble basis (to estimate probabilities/uncertainties etc.), so amenable to parallel computing

The "core" project

Scenario	Description	SST and SIC	Period
All-Hist/est1	Including changes in "all"	Observed	1960-
	known external forcings		2012
	(anthropogenic and natu-		
	ral)		
Nat-Hist/CMIP5-est1	Including changes in natu-	Observed minus CMIP5 esti-	2000-
	ral external forcings only	mate of anthropogenic signal	2012
Nat-Hist/?	Including changes in natu-	Observed minus another esti-	2000-
	ral external forcings only	mate of anthropogenic signal	2012
Nat-Hist/?	Including changes in natu-	Observed minus another esti-	2000-
	ral external forcings only	mate of anthropogenic signal	2012

Groups that have already started simulations...

Institution	Model	
LBNL (USA)	CAM5.1-2degree, CAM5.1-1degree, CAM5.1-0.25degree	
MOHC (UK)	HadGEM-3A-N96, (HadGEM-3A-N216?)	
NIES (Japan)	MIROC5	
UCT (South Africa)	HadAM3-N48, HadAM3P-N96	
UC Davis (USA)	WRF-CAM5.1-1degree	

Some pilot results...

5-day regional precipitation, 1-in-1-year event, 2009-2011

CAM5.1-2degree

HadAM3P-N96

Courtesy Oliver Angélil

Some pilot results...

5-day regional temperature, 1-in-1-year event, 2009-2011

CAM5.1-2degree

HadAM3P-N96

Courtesy Oliver Angélil

Please feel free to use the C20C data...

- -Documentation:
 - http://portal.nersc.gov/c20c/
- -Data:
 - http://esginersc.gov/
 - Search for "c20c"
 - Or contact
 - Dstone@lbl.gov / mfwehner@lbl.gov