Land Ice Modeling in

Earth System Models

Stephen Price

Climate Ocean and Sea Ice Modeling Project Fluid Dynamics and Solid Mechanics Group Los Alamos National Laboratory

Supported by DOE Office of Science ASCR & BER programs

Office of Science

Climate, Ocean, and Sea Ice Modeling Project

Yet another photo of Jakobshavn? Yawn ...

presentation goals & caveats ice sheet & atmos. / land model coupling ice sheet & ocean model coupling glacier & ice cap coupling to ESMs coupled land ice & ESM initialization

summary

presentation goals & caveats ice sheet & atmos. / land model coupling ice sheet & ocean model coupling glacier & ice cap coupling to ESMs coupled land ice & ESM initialization

summary

Goals & Caveats

 provide overview of challenges associated with, and state of, efforts to couple models of land ice with Earth Systems Models (ESMs)

Goals & Caveats

 provide overview of challenges associated with, and state of, efforts to couple models of land ice with Earth Systems Models (ESM)

• ... or, how do large-scale, (ideally) predictive ESM capabilities square with the discussions this week?

"Have you coupled processes X and Y?"

Goals & Caveats

- Caveats:
 - perspective is largely through past 5 yrs of work on coupling land ice models to the Community Earth System Model (CESM)
 - related efforts with similar and different challenges (and successes) are ongoing elsewhere (e.g., GFDL, NASA GISS/GSFC, various in U.K. and E.U.)
 - Many things are covered in passing or not at all (e.g. calving, melange, sea ice)

Community Earth System Model

- CESM consists (largely) of:
 - Atmosphere model (CAM)
 - Land model (CLM)
 - Ocean model (POP)
 - Sea ice model (CICE)
 - Land ice model(s) (CISM)

CESM Component Coupling: Hub (coupler) and Spokes (component models)

Greenland: Models vs. Observations

Price et al. (*PNAS*, **108**(22), 2011)

Rignot & Mouginot, GRL, 39 (2012)

Antarctica: Models vs. Observations

(courtesy of D. Martin & S. Cornford)

Rignot et al., Science, 333 (2011)

Model for Prediction Across Scales (MPAS)

- Spherical Centroidal Voronoi Tesselations (SCVT); unstructured mesh framework for var. res. climate model components
- Atmos., ocean, land, sea ice & ice sheet components under devel.
- Enhance grid using arbitrary density function
- Shared framework (LANL-NCAR M³)
- Beta release (ocean) this year

var. res. global mesh: 120 - 30 km in S. Ocean

var. res. Greenland ice sheet mesh: 65 - 2 km

presentation goals & caveats ice sheet & atmos. / land model coupling ice sheet & ocean model coupling glacier & ice cap coupling to ESMs coupled land ice & ESM initialization

summary

Ice Sheet & Atmos. / Land Coupling

Important processes & feedbacks to capture

- 1) Conservation of energy & mass (heat & moisture fluxes)
 - a) Freshwater flux betweeen ice sheet & ocean (SMB)
- 2) Impact of changing ice sheet geometry on:
 - a) SMB "free" using standard SMB downscaling schemes¹ (~5-10%)
 - b) Atmos. circulation "difficult"; currently requires restart of atmos. model using new (filtered?) surface topog² (~5-10%)
 - c) Albedo conceptually simple using "dynamic land units" (changing land types in time), but not standard in large-scale ESMs (?)

¹Edwards et al., TCD, 2013a, 2013b (*Ice2Sea*) ²J. Fyke / M. Vizcaino (pers. comm.)

Ice Sheet & Atmos. / Land Coupling

Important processes & feedbacks to capture

- 1) Conservation of energy & mass (heat & moisture fluxes)
 - a) Freshwater flux betweeen ice sheet & ocean (SMB)
- 2) Impact of changing ice sheet geometry on:
 - a) SMB "free" using standard SMB downscaling schemes
 - b) Atmos. circulation "difficult"; currently requires restart of atmos. model using new (filtered?) surface topog.
 - c) Albedo conceptually simple using "dynamic land units" (changing land types in time), but not standard in large-scale ESMs

Importance to GRISO:

- 1. SMB is 0-order control on ice sheet geom. & vel. (& more so in future when margin does not contact ocean?)
- 2. SMB is 0-order control on GIS freshwater flux to ocean (important for fjord circulation & transfer of heat from ocean to fjords)

SMB Downscaling

Use snowpack & energy balance model (EBM) in land model (CLM)

Precipitation on coarse atmos grid (~100 km) downscaled to fine (<=5km) ice sheet grid using lapse rate and hi-res DEM

Compute SMB in ~10 elevation classes from hi-res grid

- Avoid code duplication
- Better than PDD scheme (e.g., energetic consistency)
- Cost savings (~1/10 as many columns)
- "Dynamic land units" (in devel) allow for albedo feedbacks

SMB Downscaling

Ice sheet \rightarrow Land (10 classes)

- Ice fraction and elevation
- Runoff and calving fluxesHeat flux to surface

Land \rightarrow Ice sheet (10 classes)

- Surface mass balance
- Surface elevation
- Surface temperature

Surface Mass Balance Models

CESM vs. RACMO SMB (5 km res)

Take RACMO as the "true" SMB

Current downscaling scheme gives reasonable comparison Underestimation of accum. in steep coastal regions

CESM SMB (Gt/yr): 1980-2100

- Precipitation increases slightly over time
- Melt and runoff increase more
- SMB is persistently <= 0 after ~2070

Ice Sheet & Atmos. / Land Coupling

Missing / poorly captured / in need of improvement:

- 1) 2-way coupling (geom. effect on atmos.) non-standard and clunky (offline filtering / creating of new topog; restarts)
- 2) Precip. downscaling non-standard (is it feasible at all?)
- 3) Downscaling scheme does not capture important orographic effects (in reality, not all cells at same elev. will have same SMB)
- 4) Coupling of land ice liquid / solid freshwater flux to ocean non-standard
- 5) Subglacial hydrology models non-standard (incorrect location & lagging of melt water input to ocean); Supra- & en-glacial models non-standard
- Albedo effects from changing land types non-standard ("dynamic land units", snow/ice → rock))
- 7) SMB biases, difficult to diagnose & remove, can cause very large biases in land ice geometry & evolution

Many of these are currently being tackled (1,4,5,6,7) &/or become less important w/ hi-res (var-res) models (2,3,7?)

SMB Biases: CISM-CESM GIS Initial Condition

Subglacial Hydrology (simplistic, big picture)

Subglacial hydrology is a strong control on basal sliding (& thus ice discharge to ocean)

Zwally et al. (2002)

Subglacial hydrology is important to circulation within Greenland fjords

Evolutionary Subglacial Hydrology in CISM

Conservative, 2d, time-dependent subglacial hydrology model, containing both distributed (macroporous film) and channelized elements¹

Coupled to water-pressure dependent sliding law with theoretical² and observational³ support

presentation goals & caveats ice sheet & atmos. / land model coupling ice sheet & ocean model coupling glacier & ice cap coupling to ESMs coupled land ice & ESM initialization

summary

Ice Sheet & Ocean Coupling

Important processes & feedbacks to capture

- 1) Conservation of energy & mass between ice sheet & ocean
 - a) solid / liquid water & sensible / latent heat fluxes TO ocean
 - b) solid / liquid water & sensible / latent heat fluxes FROM ocean
- 2) Atmos. & ocean coupling
 - a) Warm / cool / moisture laden air mass advection to GIS
- 3) Freshwater effects on (local & regional) ocean circulation
- 4) Formation, advection, melting of sea ice (orphaned here)
- 5) Changes in sea level (eustatic + steric + circulation)

Ice Sheet & Ocean Coupling

Important processes & feedbacks to capture

- 1) Conservation of energy & mass between ice sheet & ocean
 - a) solid / liquid water & sensible / latent heat fluxes TO ocean
 - b) solid / liquid water & sensible / latent heat fluxes FROM ocean
- 2) Atmos. & ocean coupling
 - a) Warm / cool / moisture laden air mass advection to GIS
- 3) Freshwater effects on (local & regional) ocean circulation
- 4) Formation, advection, melting of sea ice
- 5) Changes in sea level (eustatic + steric + circulation)

Importance to GRISO:

- 1. Ocean heat content affect on marine outlet dynamics
- 2. Freshwater flux affecting local (fjord) and regional ocean circulation (& sea ice formation?)

Ice Sheet & Ocean Coupling: Implementation

Ice Sheet Model: fairly trivial code alterations

Ocean Model (POP):

- 3d, primitive equations on the sphere, hydrostat. & Boussinesqe approx.
- Eularian grid in vert., depth as vert. coord. ("z coord.")
- Fixed volume: mean sea-level = fixed!
- Many tedious & fiddly changes for sub-shelf circulation

Ocean Model (MPAS)

- Largely the same equations
- ALE, z* vert. coord., pressure forcing at sfc
- NOT fixed volume
- Sub-shelf circulation apparently trivial (so far)

New Ocean Model Grid

Existing POP grid: No cavities under ice shelves

Figures courtesy of X. Asay-Davis (LANL / PIK) & M. Maltrud (LANL)

New Ocean Model Grid

- Existing POP grid: No cavities under ice shelves
- New POP grid: Ice shelves replace by open ocean
- Bathymetry from RTOPO-1 data set (Timmermann et al. 2010)

Coupling Ice Sheet Model to Ocean Model

Current - Partial Cells Method

- Interface represented by a stairstep & "partial top cells"
- Vertical (but not horizontal) heat and freshwater fluxes at interface (L >> H)
- Moving interface means that grid cells are added or removed from the ocean over time ("wetting"/ "drying")

Future – Immersed Bndry Method (maybe)

Figures courtesy of X. Asay-Davis (LANL / PIK)

Boundary Layer Physics heat, salt, momentum and mass transport

- few observations under ice shelves
- use boundary layer theory validated for sea ice (McPhee 2008)
- includes stabilizing effect of stratification, very important for rapid melting
- Implemented in POP, not yet in MPAS-Ocean

Slide courtesy of Xylar Asay-Davis (LANL / PIK)

Coupling CISM to ocean circulation model

POP

Figures courtesy of X. Asay-Davis (LANL / PIK)

Losch 2008

Ice-Ocean Coupling: Antarctica / S. Ocean Simulation

Simulations and figures courtesy of X. Asay-Davis (LANL / PIK)

MPAS-Ocean: Ice Shelf & Ocean Coupling

MPAS-Ocean: Ice Shelf & Ocean Coupling

- Apply surface pressure, increasing in time, to southern portion.
- Vertical coordinate is z*; all layers compress proportionally.
- This is meant as a proof of concept to test robustness of the vertical coordinate, and not as a realistic land ice test.

MPAS-Ocean: Ice Shelf & Ocean Coupling

- Apply surface pressure, increasing in time, to southern portion.
- Vertical coordinate is ALE, so all layers compress proportionally.
- This is meant as a proof of concept to test robustness of the vertical coordinate, and not as a realistic land ice test.

Ice Sheet & Ocean Coupling

Missing / poorly captured / in need of improvement:

- 1) Hydrostatic models adequate? New mixing params. to go from nonhydrostatic fjord models to global-scale ocean models?
- 2) Adequate understanding / treatment of boundary layer physics?
- 3) Fjord / outlet resolution in ice sheet and ocean models: var. / hi-res. ocean models require "scale aware" parameters
- 4) Hi-res. models require hi-res. ice thickness and bathymetry (extreme outlet gl. sensitivity to small unc. in geom., e.g. E. Enderlin work)
- 5) For low-res, global models, large marginal fresh-water inputs can lead to negative salinities fixed by going to hi-res?
- 6) Need more obs for validation of modeled submarine melt
- Icebergs: 50% and 99% of freshwater flux to oceans in GIS and Ant., respectively. Thermodynamic and mechanical effects currently ignored in most ocean / sea-ice models.

Ice Sheet & Ocean Coupling

Bintanja et al., Nat Geos. (2013)

Recent trends in Ant. sea-ice extent better explained when accounting for freshwater flux from iceberg discharge AMOC "hosing" experiments: much less sensitive when using realistic spatial distribution of freshwater around GIS margin

Ice Sheet / Ocean / Sea Ice Coupling

Thermal and mechanical effects of icebergs on sea ice and ocean

Tabular iceberg opening sea-ice lead ... new ice forming in lee

Ocean and sea-ice evolution influence melange properties

presentation goals & caveats ice sheet & atmos. / land model coupling ice sheet & ocean model coupling glacier & ice cap coupling to ESMs coupled land ice & ESM initialization summary

Sastrugi, Jakobshavn Isbrae catchment, Greenlar

G&IC Coupling to ESMs

Important processes / feedbacks & relevance to GRISO have been discussed already (e.g., solid / liquid freshwater flux to oceans, albedo effects on larger ice sheet, etc.)

Current Approaches:

- predict SMB as already discussed
- RGI and volume-area scaling for initial condition (on V&A)
- Evolve G&IC in time using SMB evolution and V&A scaling
 Issues:
- SMB biases even more problematic for smaller ice masses
- Large no. of tidewater glaciers how to treat statistically?

presentation goals & caveats ice sheet & atmos. / land model coupling ice sheet & ocean model coupling glacier & ice cap coupling to ESMs coupled land ice & ESM initialization summary

SS init. cond. for GIS (10 km res; tuned to bal vels)

When the coupling to SMB field is turned "on", ice sheet does this ...

Gillet-Chaulet et al., TC (2012)

Aschwanden et al., *TC* (2013)

Problem:

Method 1: Can tune model to fit observations of modern vels and shape ...

... but then ESM SMB is NOT in equilb. w/ ice sheet

Method 2: Can "spin-up" model to (try and) include ~10⁴-10⁵ yr transients (e.g., temperature), and possibly even capture realistic modern mass trends ...

... but no (easy) way to constrain to also fit today's vels and shape

- * Solution:
- Use method 1 with ...

 ad hoc additional tuning of sliding coeff. and ice thickness to minimize difference between model flux divergence and ESM SMB (should be ~0)

 Formal PDE-constrained optimization used during initialization process

* For now, assume quasi-equilibrium initial (1850) conditions

Optimization Problem: find β that minimizes the functional \mathcal{J}

$$\mathcal{J}_{1}(\beta, H) = \frac{1}{2} \alpha_{d} \int_{\Gamma} |\operatorname{div}(\boldsymbol{U}H) - \tau_{s}|^{2} ds + \qquad (\text{SMB mismatch})$$

$$\frac{1}{2} \alpha_{v} \int_{\Gamma_{top}} |\mathbf{u} - \mathbf{u}^{obs}|^{2} ds + \qquad (\text{surface velocity mismatch})$$

$$\frac{1}{2} \alpha_{H} \int_{\Gamma} |H - H^{obs}|^{2} ds + \qquad (\text{observed thickness mismatch})$$

$$\mathcal{R}(\beta) + \mathcal{R}(H) \qquad (\text{regularizations}).$$

such that the ice sheet model equations (FO or Stokes) are satisfied

U: computed depth averaged velocity H: ice thickness β : basal sliding friction coefficient τ_s : SMB $\mathcal{R}(\beta)$ regularization term

** Heavy lifting by Georg Stadler (UT) & Mauro Perego (SNL)

Figures from Mauro Perego (SNL)

1.45

sliding coeff.

beta (kPa yr / m) 0.600 0.800 1.00 1.20 1.40

0.548

sfc speed

Truth (synthetic)

... add noise to SMB & thickness ...

Recovered (It works!)

beta (kPa yr / m)

surf. vel. magn. (m / yr) 14.0 15.0 16.0 17.0 18.0 13.2 19.0

target SMB

div. flux (m / yr) -0.200 -0.100 0.00 0.100 0.200	
-0.256	0.256
1.1	
div. flux (m / yr)	
-0.200 -0.100 0.00	0.100 0.200

Figures from Mauro Perego (SNL)

presentation goals & caveats ice sheet & atmos. / land model coupling ice sheet & ocean model coupling glacier & ice cap coupling to ESMs coupled land ice & ESM initialization

summary

Summary

- ESM and ice sheet modeling communities are making good progress on coupling
- Still lots left to do (much of it unglamorous: software-level)
- New hi-res / var-res models in devel. May "fix" many current shortcomings (?)
- Plenty of new work to do coming up with suitable params. of process-scale models (e.g. non-hydrostat processes)

Questions:

- Are we adequately engaging sea-ice community?
- Are we using CMIP4 / 5 archives to our advantage (e.g. Yin et. al, *Nat. Geosc.*, 2011)?

Future: Moving Boundaries using IBMs

- Immersed Boundary Method
 - includes ghost cells adjacent to boundary
 - implicit representation of sloped interface geometry
 - as ice sheet retreats, ghost cells become new ocean cells
 - no partial cells, so never have infinitesimally thin cells

Figures courtesy of X. Asay-Davis (LANL / PIK)

 Empirically, observed ELA occurs where accumulation area=0.57*total area [Bahr et al., 2009]

- Simulated SMB fields can be compared against RGI-derived hypsometry
- ELA (line of net 0 ice gain/loss) useful as a composite indicator of T/P conditions: gives a glaciologically-relevant, globalcoverage metric of climate model performance: vertical ELA bias

Ocean Model features needed for ice shelf simulations

- Sub-shelf circulation
 - Ocean surface is not sea level
 - Vertical walls
 - Changing upper surface elevation
- Mass and tracer fluxes at ice-ocean interface
- Boundary-layer physics (working in POP)
- Sea ice model (in early stages of development)
- Coupling to Land Ice Model

 Issue: how to evaluate CESM non-ice-sheet SMB, given extreme sparsity of SMB observations?

Coupling CISM to CESM Atmos. / Land

Coupling: Surface Mass Balance

Four models compared for 1960-2008 using ECMWF reanalysis (Polar MM5, RACMO, MAR, ECMWF-downscale)

Net SMB agrees to within 34%

Variation relative to component means:

42% (runoff), 20% (precip), melt (38%), refreeze (83%)

Less agreement regionally

Compared w/ obs., better agreement for accum. than ablation zone (higher uncertainty in modeled ablation processes)

Use of a single, common ice sheet mask crucial for comparing model and data
RCP8.5 GIS sea level rise contribution predictions (Lipscomb et al., in press)

 Best initial GIS configurations generate 7.3 cm of eustatic sea level rise (SLR) 1850-2100

RCP8.5 GIS sea level rise contribution predictions

Calving front of Jakobshavn Isbrae, Greenland

Model output: sheet thickness, water pressure, water flux, etc.

Kanger. Glacier Bed and Offshore Topography

Jak. Isbræ Bed and Offshore Topography

New Hi-Res Data Will Require Refined / Unstructured Grids

Gillet-Chaulet et al., *TCD* (2012)

Community Earth System Model

- CESM consists (largely) of:
 - Atmosphere model (CAM)
 - Land model (CLM)
 - Ocean model (POP)
 - Sea ice model (CICE)
 - Land ice model(s) (CISM)
 - 3d, regular / structured grid, SIA, FDM¹ (current)
 - " ^{1st}-order ("Blatter-Pattyn"), FDM^{2,3} (summer / fall 2013)
 - 2d, depth-integrated, block-structured AMR, "L1L2", FVM⁴ (early 2014?)
 - 3d, unstructured, var-res (MPAS), SIA \rightarrow Stokes, FEM^{5,6} (2014?)

¹Rutt et al., 2009 ²Price et al., 2011 ³Lemeiux et al., 2011 ⁴Cornford et al., 2012 ⁵Perego et al., 2012 ⁶Leng et al., 2012

Evolutionary Subglacial Hydrology in CISM

Conservative, 2d, time-dependent subglacial hydrology model, containing both distributed (macroporous film) and channelized elements¹

Coupled to water-pressure dependent sliding law with theoretical² and observational³ support

¹Hoffman et al., AGU 2012 (after Creyts, Flowers, Hewitt, Schoof, Werder) ²Schoof, 2005 ³Iverson, 2011

- Surface pressure applied to southern 150km, constant in time.
- Baroclinic instability in northern portion.

Slide courtesy of Mark Petersen (LANL)

Coupling (offline) of Ice Sheet & Ocean

Ice Sheet & Ocean Coupling: Challenges

Warming at depths of 200-500 m (Yin et al. Nat. Geosc. 2011)

Y. Xu et al. AGU (2007)

Sciascia et al. JGR (2013)

Ice-Ocean Coupling: Antarctica / S. Ocean Simulation

Simulations and figures courtesy of X. Asay-Davis (LANL / PIK)

Measuring Submarine Melt Rates Using Phase-Sens. Airborne Radar

Brinkerhoff et al., TCD (2013)

Coupled Land Ice & ESM Initialization

sliding coeff. sfc speed

0.600 0.800 0.548

0.600

0.548

0.800

beta (kPa yr / m) 800 1.00 1.20 1.2	10	surf. vel. r 14.0 15.0 1	nagn. (m / y 6.0 17.0 18	r) 3.0	div. -0.200 -0.100	. flux (m / yr) 0 0.00 0.100	0.200
1.4	5	13.2		19.0	-0.256		0.256
beta (kPa yr / m) .800 1.00 1.20 1.	40	surf. vel. 14.0 15.0	magn. (m / y 16.0 17.0 1	r) 8.0	div -0.200 -0.10	/. flux (m / yr) 0 0.00 0.100	0.200
1.4	15	13.2	E	19.0	-0.256		0.256

Truth (synthetic)

... add noise to SMB ...

Recovered (It works!)

Figures from Mauro Perego (SNL)

target SMB