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Figure 5: Spectrograms of three different 3 hour periods (red regions in top plot), showing the arrival of linearly dispersive wave trains. Sloped dark gray lines indicate manual detection and linear fitting of df/dt (see Section 4). The green region highlights a period of significant seiche activity, with an expanded plot in Figure 6, for
which the cause is unknown.
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4. Calving location 5. Future work
(In deep water, surface waves follow the dispersion relation: R N
5 1. Better understanding of bathymetry and wave propagation
W = gk characteristics (rebounds, shallow/intermediate depth dispersion,
etc.)
where w is the angular frequency and k is the wavenumber. The group velocity for a particular K is 2. Planned second deployment in July/August 2013:
then
o — 8_“’ _ 1 /g e 2 - 3 pressure sensors at all times for better triangulation.
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* Deployment of a shore-based camera (see e.g. Bourgault 2008)
_ _ _ for time-lapse monitoring of the ice face as well as visible surface
An expression for the distance from the wave source A can be derived based on the observed features and near-surface currents (Figure 9). TN A = —
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. y . 3. Longer term deployments (several months). 0 2000 4000 6000
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- Figure 9: Example shore-based georectified photograph of the sea surface,
highlighting visible surface features (such as ice, sediments, and surface
waves). A time-lapse series of such images will be used to monitor the

o 9 i glacier face, as well as track floating ice to infer horizontal velocities.
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Figure 8: Histogram of distances inferred using
Equation 3 Note the large peak between 2000 and
7 2500 m.

-

e Calving events were detected manually from )

the spectrogram (Figure 5).
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Figure 7: Range rings (gray) plotted on the coastline with an estimate glacier, however the most active region of ice loss
of ice position as of 2013-06-19 (red line). was between 2000 and 2500 m (Figure 8) from
kthe sensor.
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